【題目】將函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和,求證:數(shù)列為等比數(shù)列,并求.
【答案】(1);(2)證明見(jiàn)解析,.
【解析】
(1)先利用三角函數(shù)的誘導(dǎo)公式及二倍角公式化簡(jiǎn)函數(shù),令得極值點(diǎn),判斷出全部極值點(diǎn)按從小到大排列構(gòu)成以為首項(xiàng),為公差的等差數(shù)列,用等差數(shù)列的通項(xiàng)公式求出通項(xiàng).
(2)利用,求出,作商,利用等比數(shù)列的定義判斷出是以為首項(xiàng),為公比的等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式求出通項(xiàng),一步求出數(shù)列前項(xiàng)的和.
(1)
令,即
所以函數(shù)的極值點(diǎn)為.
從而函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大排列構(gòu)成以以為首項(xiàng),為公差的等差數(shù)列.
所以數(shù)列
(2)由可知對(duì)任意的正整數(shù),都不是的整數(shù)倍.
所以
所以數(shù)列為等比數(shù)列.
所以
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.
(1)試估計(jì)該河流在8月份水位的眾數(shù);
(2)我們知道若該河流8月份的水位小于40米的頻率為f,該河流8月份的水位小于40米的情況下發(fā)生1級(jí)災(zāi)害的頻率為g,則該河流8月份的水位小于40且發(fā)生1級(jí)災(zāi)害的頻率為,其他情況類似.據(jù)此,試分別估計(jì)該河流在8月份發(fā)生12級(jí)災(zāi)害及不發(fā)生災(zāi)害的頻率,,;
(3)該河流域某企業(yè),在8月份,若沒(méi)受12級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:
方案 | 防控等級(jí) | 費(fèi)用(單位:萬(wàn)元) |
方案一 | 無(wú)措施 | 0 |
方案二 | 防控1級(jí)災(zāi)害 | 40 |
方案三 | 防控2級(jí)災(zāi)害 | 100 |
試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為萬(wàn)元,每生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本為萬(wàn)元,在年產(chǎn)量不足萬(wàn)件時(shí),(萬(wàn)元),在年產(chǎn)量不小于萬(wàn)件時(shí),(萬(wàn)元).通過(guò)市場(chǎng)分析,每件產(chǎn)品售價(jià)為元時(shí),生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;
(2)當(dāng)產(chǎn)量為多少時(shí)利潤(rùn)最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,是實(shí)數(shù).
(Ⅰ)若在處取得極值,求的值;
(Ⅱ)若在區(qū)間為增函數(shù),求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,函數(shù)有三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。
(1)求直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動(dòng)點(diǎn)C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),直線與曲線相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com