【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切,且被軸截得的弦長(zhǎng)為,圓的面積小于13.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若點(diǎn),點(diǎn)是圓上一點(diǎn),點(diǎn)的重心,求點(diǎn)的軌跡方程;

(3)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),,以,為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說明理由.

【答案】(1);(2);(3)見解析

【解析】

1)利用點(diǎn)到直線的距離公式,結(jié)合勾股定理,建立方程,根據(jù)圓C的面積小于13,即可求圓C的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,由重心坐標(biāo)公式得到,結(jié)合,代入得到軌跡方程;(3)分類討論,設(shè)出直線方程與圓的方程聯(lián)立,利用判別式大于0得到利用韋達(dá)定理以及中點(diǎn)坐標(biāo)公式得到中點(diǎn)坐標(biāo)為,由,則,解得,即可得出結(jié)論.

(1)設(shè)圓,由題意知

解得.

又∵,∴,∴圓的標(biāo)準(zhǔn)方程為.

(2)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,由已知得:

,即,又,

所以,即為所求.

(3)當(dāng)斜率不存在時(shí),直線的方程為,不滿足題意.

當(dāng)斜率存在時(shí),設(shè)直線的方程為,.

又∵直線與圓相交于不同的兩點(diǎn),聯(lián)立,消去.

,解得.

,.

中點(diǎn)坐標(biāo)為.

在平行四邊形中,則,

由于,則,∴,解得.

,假設(shè)不成立.∴不存在這樣的直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:當(dāng)成立時(shí),總可推出

成立,那么下列命題總成立的是( )

A. 成立,則成立;

B. 成立,則成立;

C. 成立,則當(dāng)時(shí),均有成立;

D. 成立,則當(dāng)時(shí),均有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式(x﹣1)f(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的值域;

(2)討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若任意兩圓交于不同兩點(diǎn)、,且滿足,則稱兩圓為“心圓”,已知圓與圓為“心圓”,則實(shí)數(shù)的值為( )

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列方程,并回答問題:

;②;③;④;…

(1)請(qǐng)你根據(jù)這列方程的特點(diǎn)寫出第個(gè)方程;

(2)直接寫出第2009個(gè)方程的根;

(3)說出這列方程的根的一個(gè)共同特點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ,直線y=m與函數(shù)f(x)的圖象相交于四個(gè)不同的點(diǎn),從小到大,交點(diǎn)橫坐標(biāo)依次記為a,b,c,d,有以下四個(gè)結(jié)論 ①m∈[3,4)
②abcd∈[0,e4
③a+b+c+d∈
④若關(guān)于x的方程f(x)+x=m恰有三個(gè)不同實(shí)根,則m取值唯一.
則其中正確的結(jié)論是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+a(x+lnx),a∈R. (Ⅰ)若當(dāng)a=﹣1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)> (e+1)a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為,且);選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列推理正確的是( )

A. 每場(chǎng)比賽第一名得分為4 B. 甲可能有一場(chǎng)比賽獲得第二名

C. 乙有四場(chǎng)比賽獲得第三名 D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

同步練習(xí)冊(cè)答案