【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關系,并用數(shù)學歸納法證明.

【答案】解:(Ⅰ)S1=T1=2,S2=T2=12,S3=T3=120;

(Ⅱ)猜想:Sn=Tn(n∈N*),

證明:(i)當n=1時,S1=T1;

(ii)假設當n=k(k≥1且k∈N*)時,Sk=Tk,

即(k+1)(k+2)…(k+k)=2k×1×3×…(2k﹣1),

則當n=k+1時Sk+1=(k+1+1)(k+1+2)…(k+1+k﹣1)(k+1+k)(k+1+k+1)

=(k+2)(k+3)…(2k)(2k+1)(2k+2)

=

=2k+1×1×3×…(2k﹣1)(2k+1)=Tk+1

即n=k+1時也成立,

由(i)(ii)可知n∈N*,Sn=Tn成立


【解析】(I)分別令n=1,2,3計算;(II)先驗證n=1猜想成立,假設n=k猜想成立推導n=k+1猜想成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在區(qū)間[2a,a1]上不單調,求實數(shù)a的取值范圍;

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方,試確定實數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當傾斜角為 60°的直線 l 經過拋物線 C1 的焦點 F 時,有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列各式:①f(|x|+1)=x2+1;② ;③f(x2﹣2x)=|x|;④f(|x|)=3x+3x . 其中存在函數(shù)f(x)對任意的x∈R都成立的是(
A.①④
B.③④
C.①②
D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求證:不論m取什么實數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經過一個定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判定下列函數(shù)的奇偶性.

1fx;

2fx;

3fx;

4fx=|x+1|+|x-1|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),直線l與拋物線C相交于A,B兩點,P為拋物線上一點,當直線l過拋物線焦點時,|AB|的最小值為2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若AB的中點為(3,1),且直線PA,PB的傾斜角互補,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產品成功的概率分別為 .現(xiàn)安排甲組研發(fā)新產品A,乙組研發(fā)新產品B,設甲、乙兩組的研發(fā)相互獨立.
(Ⅰ)求至少有一種新產品研發(fā)成功的概率;
(Ⅱ)若新產品A研發(fā)成功,預計企業(yè)可獲利潤120萬元;若新產品B研發(fā)成功,預計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數(shù)y=f(x)在區(qū)間(1,3)上單調,求a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x在(0, )上無零點,求a的最小值.

查看答案和解析>>

同步練習冊答案