【題目】某工廠生產(chǎn)一種產(chǎn)品,根據(jù)預(yù)測可知,該產(chǎn)品的產(chǎn)量平穩(wěn)增長,記2015年為第1年,第x年與年產(chǎn)量(萬件)之間的關(guān)系如下表所示:

x

1

2

3

4

4.00

5.52

7.00

8.49

現(xiàn)有三種函數(shù)模型:,,

1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取這兩年的數(shù)據(jù)求出相應(yīng)的函數(shù)解析式;

2)因受市場環(huán)境的影響,2020年的年產(chǎn)量估計要比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,估計2020年的年產(chǎn)量.

【答案】1)模型為較好,理由見解析,相應(yīng)的函數(shù)為28.05萬件

【解析】

1)根據(jù)單調(diào)性排除,檢驗,發(fā)現(xiàn)數(shù)據(jù)差距比較大,選擇數(shù)據(jù)差距較;

2)根據(jù)(1)計算出的模型方程計算即可得解.

解:(1)符合條件的函數(shù)模型是

若模型為,

由已知得,∴,,

所以,,與已知差距較大;

若模型為為減函數(shù),與已知不符;

若模型為,由,

,

,所以,,與已知符合較好.

所以相應(yīng)的函數(shù)為

22020年預(yù)計年產(chǎn)量為

,所以2020年產(chǎn)量應(yīng)為8.05萬件

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足.

1)求的解析式;

2)若上單調(diào),求的取值范圍;

3)設(shè)a≠1),(),當(dāng)時,有最大值14,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義域為R的奇函數(shù)a為實數(shù))

1)求a的值;

2)判斷的單調(diào)性(不必證明),并求出的值域;

3)若對任意的,不等式恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知(a>0)是定義在R上的偶函數(shù),

1)求實數(shù)a的值;

2)判斷并證明函數(shù)的單調(diào)性;

3)若關(guān)于的不等式的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題方程表示雙曲線命題不等式的解集是. 為假, 為真的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

,

范圍為

型】解答
結(jié)束】
18

【題目】如圖,設(shè)是圓上的動點軸上的投影, 上一點,.

1)當(dāng)在圓上運動時求點的軌跡的方程;

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,,P為線段AC上任意一點,則的范圍是( )

A. [1,4] B. [0,4] C. [-2,4] D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x.根據(jù)市場調(diào)查,須有,,,同時日銷售量m(單位:個)與成正比.當(dāng)每個工藝品的銷售單價為29元時,日銷售量為1000.

1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;

2)當(dāng)每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)的圖象在上有且只有一個公共點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且其中一個焦點的坐標(biāo)為.

(1)求橢圓的方程;

(2)過橢圓右焦點的直線與橢圓交于兩點,在軸上是否存在點,使得為定值?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

當(dāng)時,求函數(shù)的最小值;

若對任意,恒有成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案