【題目】下列說(shuō)法錯(cuò)誤的是( )
A.回歸直線過(guò)樣本點(diǎn)的中心.
B.對(duì)分類變量X與Y,隨機(jī)變量K2的觀測(cè)值k越大,則判斷“X與Y有關(guān)系”的把握程度越小
C.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
D.在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
【答案】B
【解析】
利用線性回歸的有關(guān)知識(shí)即可判斷出.
A.回歸直線過(guò)樣本點(diǎn)的中心,故A正確;
B.對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越大,“X與Y有關(guān)系”可信程度越大,故B不正確;
C.兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1,故C正確;
D.在線性回歸方程=0.2x+0.8中,當(dāng)x每增加1個(gè)單位時(shí),預(yù)報(bào)量平均增加0.2個(gè)單位,故D正確.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有兩個(gè)車(chē)間生產(chǎn)同一種產(chǎn)品,第一車(chē)間有工人200人,第二車(chē)間有工人400人,為比較兩個(gè)車(chē)間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計(jì) | 20 |
第一車(chē)間樣本頻數(shù)分布表
(Ⅰ)分別估計(jì)兩個(gè)車(chē)間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);
(Ⅱ)分別估計(jì)兩車(chē)間工人生產(chǎn)時(shí)間的平均值,并推測(cè)哪個(gè)車(chē)間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(Ⅲ)從第一車(chē)間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中,隨機(jī)抽取3人,記抽取的生產(chǎn)時(shí)間小于65min的工人人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個(gè)定值等于;將這個(gè)結(jié)論推廣到空間是:棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在年的自主招生考試成績(jī)中隨機(jī)抽取名學(xué)生的筆試成績(jī),按成績(jī)分組:第組,第組,第組,第組,第組得到的頻率分布直方圖如圖所示
分別求第組的頻率;
若該校決定在第組中用分層抽樣的方法抽取名學(xué)生進(jìn)入第二輪面試,
已知學(xué)生甲和學(xué)生乙的成績(jī)均在第組,求學(xué)生甲和學(xué)生乙同時(shí)進(jìn)入第二輪面試的概率;
根據(jù)直方圖試估計(jì)這名學(xué)生成績(jī)的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見(jiàn)下圖).
(1)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫(xiě)下面的列聯(lián)表,能否有超過(guò)的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | |||
不獲獎(jiǎng) | |||
合計(jì) |
附表及公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)入新華書(shū)店購(gòu)買(mǎi)數(shù)學(xué)課外閱讀書(shū)籍,經(jīng)過(guò)篩選后,他們都對(duì)三種書(shū)籍有購(gòu)買(mǎi)意向,已知甲同學(xué)購(gòu)買(mǎi)書(shū)籍的概率分別為,乙同學(xué)購(gòu)買(mǎi)書(shū)籍的概率分別為,假設(shè)甲、乙是否購(gòu)買(mǎi)三種書(shū)籍相互獨(dú)立.
(1)求甲同學(xué)購(gòu)買(mǎi)3種書(shū)籍的概率;
(2)設(shè)甲、乙同學(xué)購(gòu)買(mǎi)2種書(shū)籍的人數(shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an2+4an﹣8Sn=0,則an=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)若,證明:方程有且僅有3個(gè)不同的實(shí)數(shù)根.(附:,,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com