已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓、是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.

(Ⅰ)。(Ⅱ)。

解析試題分析:(Ⅰ)由得x2+y2=1,
又∵ρ=2cos(θ+)=cosθ-sinθ,
∴ρ2=ρcosθ-ρsinθ.∴x2+y2-x+y=0,
                 5分
(Ⅱ)圓心距,
得兩圓相交,由
得,A(1,0),B
           10分
考點(diǎn):極坐標(biāo)方程、參數(shù)方程與普通方程的互化,參數(shù)方程的應(yīng)用。
點(diǎn)評:中檔題,參數(shù)方程化為普通方程,常用的“消參”方法有,代入消參、加減消參、平方關(guān)系消參等。利用參數(shù)方程,往往會將問題轉(zhuǎn)化成三角函數(shù)問題,利用三角公式及三角函數(shù)的圖象和性質(zhì),化難為易。極坐標(biāo)方程化為普通方程,常用的公式有,等。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)直線 (為參數(shù))過曲線軸負(fù)半軸的交點(diǎn),求與直線平行且與曲線相切的直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求的值及直線的直角坐標(biāo)方程;
(2)圓c的參數(shù)方程為,(為參數(shù)),試判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為,直線l經(jīng)過點(diǎn)P(2,2),傾斜角
(1)寫出圓的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于A、B兩點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:是參數(shù)).
(I)將曲線C的極坐標(biāo)方程和直線參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若直線被曲線所截得的弦長大于,求正整數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知從A口袋中摸出一個球是紅球的概率為,從B口袋中摸出一個球是紅球的概率為,F(xiàn)從兩個口袋中各摸出一個球,那么這兩個球中沒有紅球的概率是(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案