分析 通過已知條件求出b,充分利用平面幾何圖形的性質(zhì)解題.因從同一點出發(fā)的切線長相等,得PM|=|PN|,|F1M|=|F1D|,|F2N|=|F2D|,再結(jié)合雙曲線的定義得|F1D|-|F2D|=2a,從而即可求得△PF1F2的內(nèi)心的橫坐標.
解答 解:P(7,12)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1上,
所以$\frac{49}{{a}^{2}}-\frac{144}{3}=1$,a2=1,
雙曲線方法為:${x}^{2}-\frac{{y}^{2}}{3}=1$.
記△PF1F2的內(nèi)切圓圓心為C,邊PF1、PF2、F1F2上的切點分別為M、N、D,易見C、D橫坐標相等,
|PM|=|PN|,|F1M|=|F1D|,|F2N|=|F2D|,由|PF1|-|PF2|=2,
即:|PM|+|MF1|-(|PN|+|NF2|)=2,得|MF1|-|NF2|=2即|F1D|-|F2D|=2,
記C的橫坐標為x0,則D(x0,0),
于是:x0+c-(c-x0)=2,
得x0=1,
故答案為:1.
點評 本題主要考查了雙曲線的定義、雙曲線的應用及轉(zhuǎn)化問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{7}{2}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1)(3) | B. | (1)(4) | C. | (2)(3) | D. | (2)(4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com