(本小題滿分12分)
在平面內(nèi),不等式確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222940561341.png" style="vertical-align:middle;" />,不等式組確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222940607338.png" style="vertical-align:middle;" />.
(Ⅰ)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”. 在區(qū)域任取3個(gè)整點(diǎn),求這些整點(diǎn)中恰有2個(gè)整點(diǎn)在區(qū)域的概率;
(Ⅱ)在區(qū)域每次任取個(gè)點(diǎn),連續(xù)取次,得到個(gè)點(diǎn),記這個(gè)點(diǎn)在區(qū)域的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
(Ⅰ);(Ⅱ)).
(1)畫出平面區(qū)域和平面區(qū)域.可分別找到區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù),由概率公式計(jì)算出恰有
2個(gè)整點(diǎn)在區(qū)域的概率;(2)本題屬于幾何概型,先求出平面區(qū)域的面積和區(qū)域與區(qū)域相交部
分的面積,由幾何概型的概率公式得在區(qū)域任取1個(gè)點(diǎn),則該點(diǎn)在區(qū)域的概率的值,又隨機(jī)變量的可能取值為:.根據(jù)獨(dú)立重復(fù)試驗(yàn)可分別求出對(duì)應(yīng)的概率,列出分布列,根據(jù)期望公式計(jì)算出的數(shù)學(xué)期望.
(Ⅰ)依題可知平面區(qū)域的整點(diǎn)為:共有13個(gè),上述整點(diǎn)在平面區(qū)域的為:共有3個(gè),
.    ……………………………………………………………(4分)
(Ⅱ)依題可得,平面區(qū)域的面積為
平面區(qū)域與平面區(qū)域相交部分的面積為.
(設(shè)扇形區(qū)域中心角為,則,也可用向量的夾角公式求).
在區(qū)域任取1個(gè)點(diǎn),則該點(diǎn)在區(qū)域的概率為,隨機(jī)變量的可能取值為:.
,         ,
,  ,
的分布列為
 
0
1
2
3





的數(shù)學(xué)期望:.  ………………………(12分)
(或者:,故).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),現(xiàn)從袋中任意取出3個(gè)小球,假設(shè)每個(gè)小球被取出的可能性都相等.
(Ⅰ)求取出的3個(gè)小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同的概率;
(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果上學(xué)所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,
請(qǐng)估計(jì)學(xué)校600名新生中有多少名學(xué)生可以申請(qǐng)住宿;
(Ⅲ)從學(xué)校的新生中任選4名學(xué)生,這4名學(xué)生中上學(xué)所需時(shí)間
少于20分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中新生上學(xué)所需時(shí)間少于20分鐘的頻率作為每名學(xué)生上學(xué)所需時(shí)間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(Ⅰ)小問5分,(Ⅱ)小問7分)
安排四個(gè)大學(xué)生到A、B、C三個(gè)學(xué)校支教,設(shè)每個(gè)大學(xué)生去任何一個(gè)學(xué)校是等可能的.
(1)求四個(gè)大學(xué)生中恰有兩人去A校支教的概率.
(2)設(shè)有大學(xué)生去支教的學(xué)校的個(gè)數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
    視覺        
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(I)試確定的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)2009年,福特與浙江吉利就福特旗下的沃爾沃品牌業(yè)務(wù)的出售在商業(yè)條款上達(dá)成一致,據(jù)專家分析,浙江吉利必須完全考慮以下四個(gè)方面的挑戰(zhàn):第一個(gè)方面是企業(yè)管理,第二個(gè)方面是汽車制造技術(shù),第三個(gè)方面是汽車銷售,第四個(gè)方面是人才培養(yǎng).假設(shè)以上各種挑戰(zhàn)各自獨(dú)立,并且只要第四項(xiàng)不合格,或第四項(xiàng)合格且前三項(xiàng)中至少有兩項(xiàng)不合格,企業(yè)將破產(chǎn),若第四項(xiàng)挑戰(zhàn)失敗的概率為,其他三項(xiàng)挑戰(zhàn)失敗的概率分別為.
(1)求浙江吉利不破產(chǎn)的概率;
(2)專家預(yù)測(cè):若四項(xiàng)挑戰(zhàn)均成功,企業(yè)盈利15億美元;若第一、第二、第三項(xiàng)挑戰(zhàn)中僅有一項(xiàng)不成功且第四項(xiàng)挑戰(zhàn)成功,企業(yè)盈利5億美元;若企業(yè)破產(chǎn),企業(yè)將損失10億美元.設(shè)浙江吉利并購(gòu)后盈虧為X億美元,求隨機(jī)變量X的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果甲乙兩個(gè)乒乓球選手進(jìn)行比賽,而且他們?cè)诿恳痪种蝎@勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.
(1)試分別求甲打完4局、5局才獲勝的概率;
(2)設(shè)比賽局?jǐn)?shù)為ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    甲、乙兩名射擊運(yùn)動(dòng)員,甲射擊一次命中10環(huán)的概率為0.5,乙射擊一次命中10環(huán)的概率為s,若他們獨(dú)立的射擊兩次,設(shè)乙命中10環(huán)的次數(shù)為X,則EX=,Y為甲與乙命中10環(huán)次數(shù)的差的絕對(duì)值.
求(1) s的值     (2)  Y的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.若h~B(2, p),且,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案