直線l的參數(shù)方程是(其中x0,y0,a,b是常數(shù),t是參數(shù)),A,B是直線l上的兩個(gè)點(diǎn),它們分別對(duì)應(yīng)參數(shù)值t1和t2,那么|AB|等于(    )

A.|t1-t2|                                B.|t1-t2|

C.                          D.|t1|+|t2|

解析:設(shè)(x1,y1),B(x2,y2),

則x1=x0+at1,y1=y0+bt1

x2=x0+at2,  y2=y0+bt2

∴|AB|=

=|t1-t2|.

∴應(yīng)選B.

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.直線l的參數(shù)方程是
x=-1+
3
5
t
y=-1+
4
5
t
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=
2
sin(θ+
π
4
).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于M、N兩點(diǎn),求M、N兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)(x0,y0)的直線l的參數(shù)方程是
x=x0+m
y=y0+
3
m
,其中m是參數(shù).則直線上一點(diǎn)(a,b)到點(diǎn)(x0,y0)的距離可以用用點(diǎn)(a,b)對(duì)應(yīng)的參數(shù)m表示為
2|m|
2|m|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)已知曲線C的參數(shù)方程是
x=acosφ
y=
3
sinφ
(φ為參數(shù),a>0),直線l的參數(shù)方程是
x=3+t
y=-1-t
(t為參數(shù)),曲線C與直線l有一個(gè)公共點(diǎn)在x軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.
(Ⅰ)求曲線C普通方程;
(Ⅱ)若點(diǎn)A(ρ1,θ),B(ρ2,θ+
3
),C(ρ3,θ+
3
)
在曲線C上,求
1
|OA|2
+
1
|OB|2
+
1
|OC|2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度.已知直線l經(jīng)過(guò)點(diǎn)P(1,1),傾斜角α=
π
6

(I)寫出直線l的參數(shù)方程是
x=
3
t+1
y=t+1
(t為參數(shù)),
x=
3
t+1
y=t+1
(t為參數(shù)),

(II)設(shè)l與圓ρ=2相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積是
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案