如圖,O是半徑為2的球的球心,點(diǎn)A.B.C在球面上,OA.OB.OC兩兩垂直,E.F分別是大圓的弧AB與AC的中點(diǎn).

(1)求證:EF∥面OBC;

(2)求多面體OAEBCF的體積;

(3)建立適當(dāng)?shù)目臻g直角坐標(biāo)系,求的坐標(biāo),并求異面直線OF和CE的夾角的余弦值.

答案:
解析:

  (1)過(guò)E作EG⊥AO于G,連結(jié)FG,則FG⊥AO,所以EG∥BO;FG∥CO,

  又EG∩FG=G,∴面EFG∥面BCO,∵EF面EFG,∴EF∥面OBC.  4分

  (2)易求得

  設(shè)CF的延長(zhǎng)線交OA的延長(zhǎng)線于P,BE的延長(zhǎng)線交OA的延長(zhǎng)線于Q

  由對(duì)稱性知P,Q重合,即多面體EFG-BCO是臺(tái)體,  6分

  ,則多面體OAEBCF的體積是

    8分

  (3)分別以O(shè)B.OC.OA為軸建立空間直角坐標(biāo)系,則

  ∴  10分

  ∴

  ∴異面直線OF和CE的夾角的余弦值為  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,BC是半徑為2的圓O的直徑,點(diǎn)P在BC的延長(zhǎng)線上,PA是圓O的切線,點(diǎn)A在直徑BC上的射影是OC的中點(diǎn),則∠ABP=
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•東城區(qū)二模)如圖,BC是半徑為2的圓O的直徑,點(diǎn)P在BC的延長(zhǎng)線上,PA是圓O的切線,點(diǎn)A在直徑BC上的射影是OC的中點(diǎn),則∠ABP=
30°
;PB•PC=
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年合肥市高三第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)(文科)試題 題型:044

如圖,O是半徑為2的球的球心,點(diǎn)A.B.C在球面上,OA.OB.OC兩兩垂直,E.F分別是大圓的弧AB與AC的中點(diǎn).

(1)求證:EF∥面OBC;

(2)求多面體OAEBCF的體積;

(3)建立適當(dāng)?shù)目臻g直角坐標(biāo)系,求的坐標(biāo),并求異面直線OF和CE的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,O 是半徑為2的球的球心,點(diǎn)A.B.C在球面上,OA.OB.OC兩兩垂直,E.F分別是大圓的弧AB與AC的中點(diǎn)。

(1)       求證:EF//面OBC;

(2)       求多面體OAEBCF的體積;

(3)       建立適當(dāng)?shù)目臻g直角坐標(biāo)系,求的坐標(biāo),

并求異面直線OF和CE的夾角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案