在數(shù)列{an}中,a1≠0,an=2an-1(n≥2,n∈N*),前n項和為Sn,則
S4
a2
=
15
2
15
2
分析:可得數(shù)列{an}為等比數(shù)列,且公比q=2,代入要求的式子化簡可得.
解答:解:由題意可得
an
an-1
=2,
故數(shù)列{an}為等比數(shù)列,且公比q=2,
S4
a2
=
a1(1-q4)
1-q
a1q
=
1-q4
q(1-q)
=
1-24
2(1-2)
=
15
2

故答案為:
15
2
點評:本題考查等比數(shù)列的求和公式,涉及等比數(shù)列的判定,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=a,前n項和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市碣石中學高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習冊答案