【題目】已知函數(shù)f(x)=log
(1)求f(x)的定義域;
(2)求f(x)的值域.

【答案】
(1)解:函數(shù)f(x)=log

定義域需滿足: ,即﹣x2+2x+8>0

解得:﹣2<x<4

∴f(x)的定義域?yàn)閧x|﹣2<x<4}


(2)解:設(shè)u=﹣x2+2x+8,對(duì)數(shù)的底數(shù)小于1,根據(jù)性質(zhì)可知,函數(shù)f(x)= 是減函數(shù),

函數(shù)u=﹣x2+2x+8=﹣(x+1)2+9,t=

∴0<u≤9

∴0<t≤3,

∵f(x)= 在(0,+∞)減函數(shù),

∴f(x)的值域是[ ,+∞)


【解析】(1)由真數(shù)大于零即不等式即可得到函數(shù)的定義域。(2)利用復(fù)合函數(shù)的性質(zhì)結(jié)合二次函數(shù)的最值情況即可得出函數(shù)的值域。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識(shí),掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零,以及對(duì)函數(shù)的值域的理解,了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點(diǎn),BD與AB1交于點(diǎn)O,且CO⊥平面ABB1A1

(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(sinx﹣cosx)(0≤x≤2016π),則函數(shù)f(x)的各極大值之和為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ ]∪{ }
D.[ , )∪{ }

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位
B.向左平移 個(gè)單位
C.向右平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開(kāi)展促銷(xiāo)活動(dòng),對(duì)購(gòu)買(mǎi)該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:

甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤(pán),當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).

乙商場(chǎng):從裝有3個(gè)白球3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即為中獎(jiǎng).問(wèn):購(gòu)買(mǎi)該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,焦點(diǎn)到準(zhǔn)線的距離為4,過(guò)點(diǎn) 的直線交拋物線于 兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點(diǎn) 恰是線段 的中點(diǎn),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程 為: 橢圓的右焦點(diǎn)為 ,離心率為 ,直線 與橢圓 相交于 兩點(diǎn),且
(1)橢圓的方程
(2)求 的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點(diǎn)P(1,1)
(Ⅰ)求圓的方程
(II)直線kx﹣y+3=0與該圓相交于A、B兩點(diǎn),若點(diǎn)M在圓上,且有向量 (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k.

查看答案和解析>>

同步練習(xí)冊(cè)答案