若橢圓對(duì)稱軸在坐標(biāo)軸上,兩焦點(diǎn)與兩短軸端點(diǎn)正好是正方形的四個(gè)頂點(diǎn),又焦點(diǎn)到同側(cè)長(zhǎng)軸端點(diǎn)的距離為-1,求橢圓的標(biāo)準(zhǔn)方程。

答案:
解析:

解:∵焦點(diǎn)到同側(cè)長(zhǎng)軸端點(diǎn)的距離為-1

ac=-1

又∵焦點(diǎn)與兩短軸端點(diǎn)正好是正方形的四個(gè)頂點(diǎn)

b=c

∴由a=,b=c=1

∴所求方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)為2
3
,離心率為
3
3
,則該橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓的對(duì)稱軸在坐標(biāo)軸,兩焦點(diǎn)與兩短軸的端點(diǎn)恰好是正方形的四個(gè)頂點(diǎn),且焦點(diǎn)到同側(cè)長(zhǎng)軸端點(diǎn)距離為
2
-1

(1)求橢圓方程;
(2)求橢圓離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)在平面直角坐標(biāo)系xOy中,向量
j
=(0,1)
,△OFQ的面積為2
3
,且
OF
FQ
=m
,
OM
=
3
3
OQ
+
j

(Ⅰ)設(shè)4<m<4
3
,求向量
OF
FQ
的夾角的取值范圍;
(II)設(shè)以O(shè)為中心,對(duì)稱軸在坐標(biāo)軸上,以F為右焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)M,且|
OF
|=c,m=(
3
-1)c2
.是否存在點(diǎn)Q,使|
OQ
|
最短?若存在,求出此時(shí)橢圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

若橢圓對(duì)稱軸在坐標(biāo)軸上,兩焦點(diǎn)與兩短軸端點(diǎn)正好是正方形的四個(gè)頂點(diǎn),又焦點(diǎn)到同側(cè)長(zhǎng)軸端點(diǎn)的距離為-1,求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案