【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.
【答案】解:(Ⅰ)f(x)=2asinωxcosωx+2 cos2ωx﹣ =asin2ωx+ cos2ωx= sin(2ωx+φ) ∵f(x)的最小正周期為T=π
∴ ,ω=1,
∵f(x)的最大值為2,
∴ =2,
即a=±1,
∵a>0,∴a=1.
即f(x)=2sin(2x+ ).
由2x+ = +kπ,
即x= + ,(k∈Z).
(Ⅱ)由f(α)= ,得2sin(2α+ )= ,
即sin(2α+ )= ,
則sin(4α+ )=sin[2(2α+ ) ]=﹣cos2(2α+ )=﹣1+2sin2(2α+ )=﹣1+2×( )2=﹣
【解析】(Ⅰ)根據(jù)條件函數(shù)最值和周期,利用三角函數(shù)的公式進(jìn)行化簡即可求a和ω的值,即可求出函數(shù)的解析式和對稱軸方程;(Ⅱ)根據(jù)f(a)= ,利用余弦函數(shù)的倍角公式進(jìn)行化簡即可求sin(4α+ )的值.
【考點精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識,掌握兩角和與差的正弦公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的5個樣本點,數(shù)值如下表:
| 0.25 | 0.5 | 1 | 2 | 4 |
16 | 12 | 5 | 2 | 1 |
(1)根據(jù)散點圖判斷,哪一個適宜作為關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果試建立與之間的回歸方程.(注意或計算結(jié)果保留整數(shù))
(3)由(2)中所得設(shè)z=+且,試求z的最小值。
參考數(shù)據(jù)及公式如下:
,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點中,相鄰兩條對稱軸之間的距離為,且圖象上一個最低點為M.
(1)求ω,φ的值;
(2)求f(x)的圖像的對稱中心;
(3)當(dāng)x∈時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,D是 的中點,BD交AC于E. (Ⅰ)求證:DC2=DEDB;
(Ⅱ)若CD=2 ,O到AC的距離為1,求⊙O的半徑r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線l:上.
Ⅰ求圓的方程;
Ⅱ求過點且與圓相切的直線方程;
Ⅲ設(shè)圓與x軸相交于A、B兩點,點P為圓上不同于A、B的任意一點,直線PA、PB交y軸于M、N點當(dāng)點P變化時,以MN為直徑的圓是否經(jīng)過圓內(nèi)一定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x||x﹣1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},則A∩B=( )
A.{﹣1,0,1,2,3}
B.{0,1,2,3}
C.{1,2,3}
D.{﹣1,1,2,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面ABCD是矩形,平面ABCD,,E,F(xiàn)是線段BC,AB的中點.
Ⅰ證明:;
Ⅱ在線段PA上確定點G,使得平面PED,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三位老師分別教數(shù)學(xué)、英語、體育、勞技、語文、閱讀六門課,每位教兩門.已知:
(1)體育老師和數(shù)學(xué)老師住在一起,
(2)A老師是三位老師中最年輕的,
(3)數(shù)學(xué)老師經(jīng)常與C老師下象棋,
(4)英語老師比勞技老師年長,比B老師年輕,
(5)三位老師中最年長的老師比其他兩位老師家離學(xué)校遠(yuǎn).
問:A、B、C三位老師每人各教哪幾門課?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為( )
A.
B.2π
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com