設(shè)函數(shù)f(x)定義如表,數(shù)列{xn}滿足x0=5,且對任意自然數(shù)均有xn+1=f(xn),則x2012的值為( 。
x12345
f(x)51342
A、1B、2C、4D、5
考點(diǎn):函數(shù)的值
專題:
分析:利用函數(shù)f(x)定義,計(jì)算可得數(shù)列{xn}是:5,2,1,5,2,1,…是一個周期性變化的數(shù)列,周期為:3,從而得出答案.
解答: 解:由題意,∵x0=5,且對任意自然數(shù)均有xn+1=f(xn),
∴x1=f(x0)=2,x2=f(x1)=1,x3=f(x2)=5,x4=f(x3)=2,
故數(shù)列{xn}滿足:2,1,5,2,1,5…是一個周期性變化的數(shù)列,周期為:3.
∴x2012=x3×670+2=x2=1.
故選:A.
點(diǎn)評:本小題主要考查函數(shù)的表示法、函數(shù)的周期性的應(yīng)用、考查數(shù)列的周期性,考查運(yùn)算求解能力與轉(zhuǎn)化思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,某直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則極點(diǎn)O 到這條直線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(cosx)(0≤x≤π),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
sinx
|sinx|
+
|cosx|
cosx
+
tanx
|tanx|
+
|cotx|
cotx
的值域是數(shù)集
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求2
k
4k4+8k2+1
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了了解學(xué)生參加社會實(shí)踐活動的意向,采用分層抽樣從高一、高二、高三學(xué)生中抽取容量為200的樣本進(jìn)行調(diào)查,已知高一、高二、高三的學(xué)生人數(shù)之比為4:3:3,則應(yīng)從高三學(xué)生中抽取的人數(shù)是( 。
A、30B、40C、60D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}各項(xiàng)均是正數(shù),且a2,
1
2
a3,a1成等差數(shù)列,則
a5+a4
a4+a3
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=ex+x2+x+1上的點(diǎn)到直線2x-y=3的距離的最小值為( 。
A、
5
5
B、
5
C、
2
5
5
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,四邊形ABCD與BDEF是邊長均為a的菱形,F(xiàn)A=FC
(1)求證:AC⊥平面BDEF
(2)求證:FC∥平面EAD
(3)當(dāng)FB與底面ABCD成45°角時(shí),求該幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案