【題目】2019年6月湖北潛江將舉辦第六屆“中國湖北(潛江)龍蝦節(jié)”,為了解不同年齡的人對“中國湖北(潛江)龍蝦節(jié)”的關注程度,某機構隨機抽取了年齡在20—70歲之間的100人進行調查,經(jīng)統(tǒng)計“年輕人”與“中老年人”的人數(shù)之比為。

關注

不關注

合計

年輕人

30

中老年人

合計

50

50

100

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99﹪的把握認為關注“中國湖北(潛江)龍蝦節(jié)”是否和年齡有關?

(2)現(xiàn)已經(jīng)用分層抽樣的辦法從中老年人中選取了6人進行問卷調查,若再從這6人中選取3人進行面對面詢問,記選取的3人中關注“中國湖北(潛江)龍蝦節(jié)”的人數(shù)為隨機變量,求的分布列及數(shù)學期望。

附:參考公式其中

臨界值表:

0.05

0.010

0.001

3.841

6635

10.828

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)首先將列聯(lián)表填寫完整,根據(jù)公式計算 ,再與臨界值表作比較得到答案.

(2)首先計算關注人數(shù)的概率,再寫出分布列,計算數(shù)學期望.

解:

關注

不關注

合計

年輕人

10

30

40

中老年人

40

20

60

合計

50

50

100

其中代入公式的,故有﹪的把握認為關注“中國湖北(潛江)龍蝦節(jié)”和年齡有關.

(2)抽取的6位中老年人中有4人關注,2人不關注,則可能取的值有

所以的分布列為

1

2

3

P

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,各類手機娛樂軟件也如雨后春筍般涌現(xiàn). 如表中統(tǒng)計的是某手機娛樂軟件自2018年8月初推出后至2019年4月底的月新注冊用戶數(shù),記月份代碼為(如對應于2018年8月份,對應于2018年9月份,…,對應于2019年4月份),月新注冊用戶數(shù)為(單位:百萬人)

(1)請依據(jù)上表的統(tǒng)計數(shù)據(jù),判斷月新注冊用戶與月份線性相關性的強弱;

(2)求出月新注冊用戶關于月份的線性回歸方程,并預測2019年5月份的新注冊用戶總數(shù).

參考數(shù)據(jù):,,.

回歸直線的斜率和截距公式:.

相關系數(shù)(當時,認為兩相關變量相關性很強. )

注意:兩問的計算結果均保留兩位小數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x1)-f(x2),且當x>1時,f(x)<0.

(1)證明:f(x)為單調遞減函數(shù).

(2)f(3)=-1,求f(x)[2,9]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論函數(shù)的單調性;

(2)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的方程為,其中.

(1)求證:直線恒過定點;

(2)當變化時,求點到直線的距離的最大值;

(3)若直線分別與軸、軸的負半軸交于兩點,求面積的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為且對任意的. ,.

(1)求并證明的奇偶性;

(2)判斷的單調性并證明;

(3);若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了保證食品的安全衛(wèi)生,食品監(jiān)督管理部門對某食品廠生產(chǎn)甲、乙兩種食品進行了檢測調研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).規(guī)定:當食品中的有害微量元素的含量在時為一等品,在為二等品,20以上為劣質品.

(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個數(shù)據(jù),再分別從這5個數(shù)據(jù)中各選取2個,求抽到食品甲包含劣質品的概率和抽到食品乙全是一等品的概率;

(2)在概率和統(tǒng)計學中,數(shù)學期望(或均值)是基本的統(tǒng)計概念,它反映隨機變量取值的平均水平.變量的一切可能的取值與對應的概率乘積之和稱為該變量的數(shù)學期望,記為.

參考公式:變量的取值為對應取值的概率,可理解為數(shù)據(jù)出現(xiàn)的頻率,

.

①每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質品虧損20元,根據(jù)上表統(tǒng)計得到甲、乙兩種食品為一等品、二等品、劣質品的頻率,分別估計這兩種食品為一等品、 二等品、劣質品的概率,若分別從甲、乙食品中各抽取1件,求這兩件食品各自能給該廠 帶來的盈利期望.

②若生產(chǎn)食品甲初期需要一次性投入10萬元,生產(chǎn)食品乙初期需要一次性投人16 萬元,但是以目前企業(yè)的狀況,甲乙兩條生產(chǎn)線只能投資其中一條.如果你是該食品廠負責人,以一年為期限,盈利為參照,請給出合理的投資方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,.

(1)求證:;

(2)求證:平面;

(3)若二面角的大小為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的一個焦點與拋物線y2=-4x的焦點相同,且橢圓C上一點與橢圓C的左,右焦點F1,F2構成的三角形的周長為.

(1)求橢圓C的方程;

(2)若直線lykxm(k,mR)與橢圓C交于A,B兩點,O為坐標原點,AOB的重心G滿足: ,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案