【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則BB1與平面AB1C1所成的角是( )

A.
B.
C.
D.

【答案】A
【解析】解:以B為坐標原點,以與BC垂直的直線為x軸,BC為y軸,建立空間直角坐標系,
則A( ,1,0),B1(0,0,3),C1(0,2,3), =(﹣ ,﹣1,3), =(0,2,0), =(0,0,3).
設平面AB1C1所的一個法向量為 =(x,y,z)
,
取z=1,則得 =( ,0,1),
∵cos< >= = = ,
∴BB1與平面AB1C1所成的角的正弦值為 ,
∴BB1與平面AB1C1所成的角為
故選A.

【考點精析】根據(jù)題目的已知條件,利用空間角的異面直線所成的角的相關知識可以得到問題的答案,需要掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(a﹣ )(a∈R).若關于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一個元素,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)對任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)g(x)=f(x)+m,(m∈R). ①若存在實數(shù)a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且g(x)取值范圍也為[a,b],求m的取值范圍;
②若函數(shù)g(x)的零點都是函數(shù)h(x)=f(f(x))+m的零點,求h(x)的所有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點,則截面AEFD1與底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點.證明A1 , C1 , F,E四點共面,并求直線CD1與平面A1C1FE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(﹣∞,+∞)上的奇函數(shù),當x>0時,f(x)=4x﹣x2 , 若函數(shù)f(x)在區(qū)間[t,4]上的值域為[﹣4,4],則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=( x﹣2x
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對所有θ∈[0, ]都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中a是0﹣9的某個整數(shù)

(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓,從成績穩(wěn)定性角度考慮,你認為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=log2x﹣3sin( x)零點的個數(shù)是(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習冊答案