【題目】長方形中,,是中點(diǎn)(圖1).將沿折起,使得(圖2)在圖2中:
(1)求證:平面平面;
(2)在線段上是否存點(diǎn),使得二面角的余弦值為,說明理由.
【答案】(1)證明見解析(2)存在,理由見解析
【解析】
(1)利用勾股定理與線面垂直的性質(zhì)證明平面即可.
(2) 以為坐標(biāo)原點(diǎn),為軸,為軸,過作平面的垂線為軸,建立空間直角坐標(biāo)系. 設(shè),再根據(jù)二面角的向量方法,分別求解面的法向量,再根據(jù)法向量的夾角求解即可.
(1)在長方形中,連結(jié),因?yàn)?/span>,是中點(diǎn),
所以,從而,
所以
因?yàn)?/span>,,
所以平面.
因?yàn)?/span>平面,
所以平面平面.
(2)因?yàn)槠矫?/span>平面,交線是,
所以在面過垂直于的直線必然垂直平面.
以為坐標(biāo)原點(diǎn),為軸,為軸,過作平面的垂線為軸,
建立空間直角坐標(biāo)系.
則,,,.設(shè),則.
設(shè)是平面的法向量,
則,即,取,
平取面的一個(gè)法向量是.
依題意,
即,解方程得,
因此在線段上存點(diǎn),使得二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①在函數(shù)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為;
②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;
③“且”是“”的必要不充分條件;
④在中,若,則角等于或.
其中是真命題的序號(hào)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上一動(dòng)點(diǎn)P到定點(diǎn)C(1,0)的距離與它到直線的距離之比為.
(1)求點(diǎn)P的軌跡方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),A,B兩點(diǎn)在點(diǎn)P的軌跡上,F是點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個(gè)正三角形中,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自謝爾賓斯基三角形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連接正方體每個(gè)面的中心構(gòu)成一個(gè)正八面體,則該八面體的外接球與內(nèi)切球體積之比為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個(gè)正整數(shù),則實(shí)數(shù)k的取值范圍為 ( 。
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠抽取了在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測(cè)量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.
(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)若質(zhì)量指標(biāo)值在之內(nèi)為一等品.
(i)用樣本估計(jì)總體,問該工廠一天生產(chǎn)的產(chǎn)品是否有以上為一等品?
(ii)某天早上、下午分別抽檢了50件產(chǎn)品,完成下面的表格,并根據(jù)已有數(shù)據(jù),判斷是否有的把握認(rèn)為一等品率與生產(chǎn)時(shí)間有關(guān)?
一等品個(gè)數(shù) | 非一等品個(gè)數(shù) | 總計(jì) | |
早上 | 36 | 50 | |
下午 | 26 | 50 | |
總計(jì) |
附:.
0.25 | 0.15 | 0.10 | 0.050 | 0.010 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機(jī)構(gòu)對(duì)“使用微信支付”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信支付”贊成人數(shù)如下表.
年齡 (單位:歲) | , | , | , | , | , | , |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信支付”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com