已知F1、F2分別是橢圓的左、右焦點,A是橢圓上一動點,圓C與F1A的延長線、F1F2的延長線以及線段AF2相切,若M(t,0)為一個切點,則( )
A.t=2
B.t>2
C.t<2
D.t與2的大小關系不確定
【答案】分析:由題意知,圓C是△AF1F2的旁切圓,點M是圓C與x軸的切點,設圓C與直線F1A的延長線、AF2分別相切于點P,Q,
則由切線的性質可知:AP=AQ,F(xiàn)2Q=F2M,F(xiàn)1P=F1M,由此能求出t的值.
解答:解:由題意知,圓C是△AF1F2的旁切圓,
點M是圓C與x軸的切點,
設圓C與直線F1A的延長線、AF2分別相切于點P,Q,
則由切線的性質可知:
AP=AQ,F(xiàn)2Q=F2M,F(xiàn)1P=F1M,
∴MF2=QF2=(AF1+AF2)-(AF1+AQ)
=2a-AF1-AP
=2a-F1P
=2a-F1M
∴MF1+MF2=2a,
∴t=a=2.
故選A.

點評:本題主要考查橢圓標準方程,簡單幾何性質,直線與橢圓的位置關系,圓的簡單性質等基礎知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點F1,F(xiàn)2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(Ⅰ)求圓C的方程;
(Ⅱ)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
DF2
=
F2E
,點E關于x軸的對稱點為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點,P是雙曲線的上一點,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習冊答案