已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)試確定的值,使不等式恒成立.
(Ⅰ)當(dāng)時(shí),上遞增;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;(Ⅱ).

試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間、最值等數(shù)學(xué)知識和方法,突出考查分類討論思想和綜合分析問題和解決問題的能力.第一問是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,但是題中有參數(shù),需對參數(shù)進(jìn)行討論,可以轉(zhuǎn)化為含參一元一次不等式的解法;第二問是恒成立問題,可以轉(zhuǎn)化為求最值問題,研究一下最大值是不是0,這一問中也需要對進(jìn)行討論.
試題解析:(Ⅰ)
,上遞增;
,當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減.                  5分
(Ⅱ)由(Ⅰ)知,若,上遞增,
,故不恒成立.
,當(dāng)時(shí),遞減,,不合題意.
,當(dāng)時(shí),遞增,,不合題意.
,上遞增,在上遞減,
符合題意,
綜上.             10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,函數(shù)的圖象與軸的交點(diǎn)也在函數(shù)的圖象上,且在此點(diǎn)有公切線.
(Ⅰ)求的值;
(Ⅱ)試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若在區(qū)間上單調(diào)遞增,試求的取值或取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義:符合稱為的一階不動(dòng)點(diǎn),符合稱為的二階不動(dòng)點(diǎn)。設(shè)函數(shù)若函數(shù)沒有一階不動(dòng)點(diǎn),則函數(shù)二階不動(dòng)點(diǎn)的個(gè)數(shù)為   (    )
A.四個(gè)B.兩個(gè)C.一個(gè)D.零個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則函數(shù)的圖象在點(diǎn)處的切線方程是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是,則不等式組所確定的平面區(qū)域在內(nèi)的面積為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)  
(1)求函數(shù)上的最大值和最小值.
(2)過點(diǎn)作曲線的切線,求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線在點(diǎn)處的切線平行于軸,則    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè).若曲線與直線所圍成封閉圖形的面積為,則______.

查看答案和解析>>

同步練習(xí)冊答案