三個(gè)數(shù)0.32,20.3,log0.32的大小關(guān)系為( 。
A、log0.32<0.32<20.3
B、log0.32<20.3<0.32
C、0.32<log0.32<20.3
D、0.32<20.3<log0.32
考點(diǎn):對(duì)數(shù)值大小的比較
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵0<0.32<1,20.3>1,log0.32<0,
∴20.3>0.32>log0.32.
故選:A.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}的前項(xiàng)之和Sn=2n+1,則此數(shù)列的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(x+1)(3-x)≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(2x-1)的定義域?yàn)閇-3,3],則函數(shù)f(x)的定義域?yàn)?div id="ga0uw4u" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)一種機(jī)器的固定成本為5000元,且每生產(chǎn)1臺(tái)需要增加投入25元,為了對(duì)今后的銷(xiāo)售提供參考數(shù)據(jù),對(duì)銷(xiāo)售市場(chǎng)進(jìn)行調(diào)查后得知,市場(chǎng)對(duì)此產(chǎn)品的需求量為每年500臺(tái),已知銷(xiāo)售收入函數(shù)為:H(x)=500x-
1
2
x2,其中x是產(chǎn)品售出的數(shù)量,且0≤x≤500.
(Ⅰ)若x為年產(chǎn)量,y為利潤(rùn),求y=f(x)的解析式;
(Ⅱ)當(dāng)年產(chǎn)量為何值時(shí),工廠的年利潤(rùn)最大,其最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:對(duì)于定義域D內(nèi)的任意兩個(gè)x1,x2(x1≠x2)都存在常數(shù)k,使得|f(x1)-f(x2)|<k|x1-x2|成立,則稱f(x)在D上為“諧函數(shù)”,若f(x)=
x
在(4,+∞)上為“諧函數(shù)”,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={2,0,1,4},B={k|k∈R,k2-2∈A,k-2∉A},則集合B中所有元素之和為(  )
A、2
B、-2
C、0
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:方程x2+mx+1=0有兩個(gè)不相等的負(fù)實(shí)數(shù)根;命題q:方程4x2+4(m-2)x+1=0無(wú)實(shí)數(shù)根.
(1)寫(xiě)出¬q;
(2)若命題p或q為真,命題p且q為假,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出命題“若方程ax2-bx+c=0(a≠0)的兩根均大于0,則ac>0”的一個(gè)逆否命題是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案