【題目】如圖,在四棱錐中,平面,,.為線段的中點.

1)證明:;

2)求與平面所成的角的正弦值.

【答案】(1)見解析;(2)

【解析】

1)根據(jù)已知條件證明,結合平面.即可得證;

2)解法一(幾何法):先找到在平面內(nèi)的射影直線,則所求角可得,在直角三角形中求出此角,即可得結果;

解法二(空間向量法):建立空間直角坐標系,確定各點坐標,求出坐標和平面的法向量坐標,結合線面角公式,即可得結果.

1)取中點,因為,,

所以,,∴.

因為平面,平面,所以,

因為平面,平面,,

所以.

2)法一:連結,由(1平面可得,

與平面所成角為.

,分別是,的中點,

,

因為,,

所以,

因為,所以,

∴在中,

,

.

因此與平面所成的角的正弦值為.

法二:以為坐標原點,,平行于的直線

,,軸,建立如圖所示空間直角坐標系,則因為

,,所以,,

因為,所以,因此,,

,,,

從而為平面一個法向量,

,,

.

因此與平面所成的角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,底面,點分別為的中點,且異面直線所成的角的大小為.

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)有兩個零點

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,過點的直線與圓交于兩點

1)若,求直線的方程;

2)若直線軸交于點,設,,,R,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進行調查,其中女性有.下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱“體育述”,已知“體育迷”中名女性.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?

非體育迷

體育迷

合計

合計

(2)將日均收看該體育項目不低于分鐘的觀眾稱為“超級體育迷”,已知“超級體育述”中有名女性,若從“超級體育述”中任意選取,求至少有名女性觀眾的概率.

附: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:;

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機抽取名學生的筆試成績,按成績分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學生進入第二輪面試,

已知學生甲和學生乙的成績均在第組,求學生甲和學生乙同時進入第二輪面試的概率;

根據(jù)直方圖試估計這名學生成績的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知焦點在軸上的拋物線過點,橢圓的兩個焦點分別為,,其中的焦點重合,過點的長軸垂直的直線交兩點,且,曲線是以坐標原點為圓心,以為半徑的圓.

(1)求的標準方程;

(2)若動直線相切,且與交于,兩點,求的面積的取值范圍.

查看答案和解析>>

同步練習冊答案