已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)求函數(shù)的單調(diào)區(qū)間.
(1);(2)當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是。
解析試題分析:(1)先求函數(shù)的定義域,然后求導(dǎo)數(shù),根據(jù)“若是函數(shù)的極值點(diǎn),則是導(dǎo)數(shù)的零點(diǎn)”;(2)利用導(dǎo)數(shù)的正負(fù)分析原函數(shù)的單調(diào)性,按照列表分析.
試題解析:(1)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/a/foiyf.png" style="vertical-align:middle;" />, 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4c/0/lohr1.png" style="vertical-align:middle;" />是函數(shù)的極值點(diǎn),所以
解得或 4分
經(jīng)檢驗(yàn),或時(shí),是函數(shù)的極值點(diǎn),
又因?yàn)閍>0所以 6分
(2)若,
所以函數(shù)的單調(diào)遞增區(qū)間為;
若,令,解得
當(dāng)時(shí),的變化情況如下表
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是- 0 + 極大值
考點(diǎn):1.導(dǎo)數(shù)公式3.函數(shù)極值;3.函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
機(jī)床廠今年年初用98萬(wàn)元購(gòu)進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬(wàn)元,從第二年開(kāi)始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬(wàn)元,該機(jī)床使用后,每年的總收入為50萬(wàn)元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬(wàn)元.
(Ⅰ)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開(kāi)始,該機(jī)床開(kāi)始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對(duì)機(jī)床的處理方案有兩種:
(1)當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬(wàn)元價(jià)格處理該機(jī)床;
(2)當(dāng)盈利額達(dá)到最大值時(shí),以12萬(wàn)元價(jià)格處理該機(jī)床.
請(qǐng)你研究一下哪種方案處理較為合理?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)圖象上一點(diǎn)處的切線(xiàn)方程為.
(1)求的值;
(2)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù));(3)令,若的圖象與軸交于(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)和.其中.
(1)若函數(shù)與的圖像的一個(gè)公共點(diǎn)恰好在軸上,求的值;
(2)若和是方程的兩根,且滿(mǎn)足,證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由;
(3)關(guān)于的方程在上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的函數(shù),當(dāng)時(shí),,且對(duì)任意的 ,有,
(Ⅰ)求證:;
(Ⅱ)求證:對(duì)任意的,恒有;
(Ⅲ)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)在上,點(diǎn)在上,設(shè)矩形的面積為,
(Ⅰ)按下列要求求出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在一個(gè)周期內(nèi)的部分對(duì)應(yīng)值如下表:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com