精英家教網 > 高中數學 > 題目詳情
已知矩形ABCD,AB=2,BC=x,將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中,則( 。
A.當x=1時,存在某個位置,使得AB⊥CD
B.當x=
2
時,存在某個位置,使得AB⊥CD
C.當x=4時,存在某個位置,使得AB⊥CD
D.?x>0時,都不存在某個位置,使得AB⊥CD
設BC=x
∵BC⊥CD
若存在某個位置,使得直線AB⊥CD垂直,則CD⊥平面ABC
則CD⊥AC
Rt△ACD中,CD=2,AD=x,則由直角邊小于斜邊可知,AD>CD,即x>2
結合選項可知只要選項C中x=4時,有符合條件的位置
故選C
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,平行六面體ABCD-A1B1C1D1中,以頂點A為端點的三條棱長都為1,且兩夾角為60°.
(1)求AC1的長;
(2)求BD1與AC夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點.
(Ⅰ)若Q是PA的中點,求證:PC平面BDQ;
(Ⅱ)若PB=PD,求證:BD⊥CQ;
(Ⅲ)在(Ⅱ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD為直角梯形,PA⊥底面ABCD其中AB⊥AD,CD⊥AD,CD=AD=PA=2AB,E是PC中點.
(1)求證:BE平面PAD;
(2)求異面直線PD與BC所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
(1)求證:CD平面EFGH;
(2)如果AB=CD=a,求證:四邊形EFGH的周長為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖甲,在等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AE,F是BC上的點,AF與DE交于點G,將△ABF沿AF折起,得到如圖乙所示的三棱錐A-BCF,證明:DE平面BCF.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F分別是AD、PC的中點.
(1)求證:EF面PAB;
(2)求EF與面ABCD所成角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,與平面AA1D1D平行的平面是______;與平面A1B1C1D1平行的平面是______,與平面BDD1B1平行的棱有______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,兩個全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求證:MN平面BCE.

查看答案和解析>>

同步練習冊答案