【題目】已知函數(shù)f(x)= ﹣ 的定義域為集合A,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求實數(shù)a的取值范圍.
【答案】
(1)解:∵要使函數(shù)有意義
解得3≤x<7,
∴A={x|3≤x<7};
∴RA={x|x<3或x≥7},
又B={x∈Z|0<x<10}={1,2,3,4,5,6,7,8,9},
∴RA∩B={1,2,7,8,9}
(2)解:(1)當(dāng)C=,2a+3≥a+5,∴a≥2,
(2)當(dāng)C≠, ,
∴0≤a<2,
綜上所述a≥0
【解析】本題考查的是集合的運算關(guān)系交、并、補。尤其注意當(dāng)A∩C=C時,特殊情況當(dāng)C=時。
【考點精析】通過靈活運用交、并、補集的混合運算,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達(dá),增強數(shù)形結(jié)合的思想方法即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.
(Ⅰ)求證:BD⊥平面ECD.
(Ⅱ)求D點到面CEB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為R,A={x|2x2﹣9x+4≤0},B={x|x2+a<0}.
(1)當(dāng)a=﹣9時,求A∩B,(RA)∪B;
(2)當(dāng)a<0時,若(RA)∩B=B,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 為奇函數(shù).
(1)若函數(shù)f(x)在區(qū)間 上為單調(diào)函數(shù),求m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[1,k]上的最小值為3k,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時,f(x)=|2x﹣1|,那么當(dāng)x>2時,函數(shù)f(x)的遞減區(qū)間是( )
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2﹣x)=f(x﹣1),且方程f(x)=x有兩個相等的實根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]與[2m,2n],若存在,求出m,n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)Z=(m2+5m+6)+(m2﹣2m﹣15)i,當(dāng)實數(shù)m為何值時:
(1)Z為實數(shù);
(2)Z為純虛數(shù);
(3)復(fù)數(shù)Z對應(yīng)的點Z在第四象限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)= (a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函數(shù)f(x)的值域是[4,+∞),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市上年度電價為0.80元/千瓦時,年用電量為a千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.75元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時)經(jīng)測算,下調(diào)電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r最低為多少時,可保證電力部門的收益比上年度至少增加20%.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com