(本小題滿分13分)
某設計部門承接一產品包裝盒的設計(如圖所示),客戶除了要求邊的長分別為外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大。
若設計部門設計出的樣品滿足:均為直角且,矩形的一邊長為,請你判斷該包裝盒的設計是否能符合客戶的要求?說明理由.

解:該包裝盒的樣品設計符合客戶的要求。
(1)以下證明滿足條件①的要求.
∵四邊形為矩形,均為直角,
 ∴,
在矩形中,
∴面  ………………………………………………3分
(2)以下證明滿足條件②、③的要求.
∵矩形的一邊長為,
而直角三角形的斜邊長為,∴
,則
為原點,分別為軸的正半軸建立空間直角坐標系
,,
設面的一個法向量為,

,取,則………………………6分
而面的一個法向量為,
設面與面所成的二面角為,則
, ∴
即當時,面與面所成的二面角不小于.     ……………………………8分
又, 由均為直角知,,該包裝盒可視為四棱錐

當且僅當,即時,的體積最大,最大值為.      …………………………………………………………………………………12分
,可以滿足面與面所成的二面角不小于的要求,
綜上,該包裝盒的設計符合客戶的要求。            ………………………………………13分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

切線與圓切于點,圓內有一點滿足,的平分線交圓于,延長交圓于,延長交圓于,連接

(Ⅰ)證明://;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修41:幾何證明選講
如圖,相交于A、B兩點,AB是的直徑,過A點作的切線交于點E,并與BO1的延長線交于點P,PB分別與交于C,D兩點.
求證:(1)PA·PD=PE·PC; (2)AD=AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

請考生在(22)、(23)、(24)三題中任選一題作答,如果多答,則按做的第一題記分.作答時用2B鉛筆在答題卡上把所選題目對應題號右側的方框涂黑.
(22)(本小題滿分10分)選修4—1:幾何證明選講。如圖,⊙O是△的外接圓,D
是的中點,BDACE
(Ⅰ)求證:CD=DE·DB;
(Ⅱ)若,OAC的距離為1,求⊙O的半徑

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

((本小題滿分10分)選修4—1:幾何證明選講
如圖,已知AD是的外角的平分線,交BC的延長線于點D,延長DA交的外接圓于點F,連結FB、FC

(I)求證:FB=FC;
(II)求證:FB2=FA·FD;
(III)若AB是外接圓的直徑,求AD的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.

求證:(1)△ABC≌△DCB
(2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

曲線(為參數(shù))的焦距是 (    )

A.3 B.6 C.8 D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題10分)
如圖,為⊙的直徑,切⊙于點交⊙于點,,點上.求證:是⊙的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖,在⊙O中,弦CD垂直于直徑AB,求證:

查看答案和解析>>

同步練習冊答案