如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓C上一動點,點P在線段AM上,點N在線段CM上,且滿足
AM
=2
AP
NP
AM
=0
,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足
FG
FH
,求λ
的取值范圍.
(1)設(shè)點N的坐標為(x,y),
AM
=2
AP
,∴點P為AM的中點,
NP
AM
=0,∴NP⊥AM,∴NP是線段AM的垂直平分線,∴NM=NA,
又點N在CM上,設(shè)圓的半徑是 r,則 r=2
2
,
∴NC=r-NM,∴NC+NM=r=2
2
>AC,
∴點N的軌跡是以A、C 為焦點的橢圓,
∴2a=2
2
,c=1,可求得b=1,
∴橢圓
x2
2
+y2=1
,即曲線E的方程:
x2
2
+y2=1

(2)當斜率不存在時,直線與曲線E有2個交點此時參數(shù)的值為λ=
1
3
,
不妨設(shè)FH斜率為k,且將原點移至F,
則直線FH方程為y=kx,橢圓方程變?yōu)?span >
x2
2
+(y-2)2=1,
將直線方程代入橢圓得
x2
2
+(kx-2)2=1,整理得(1+2k2)x2-8kx+6=0,
直線與曲線E有二不同的交點,故△=(-8k)2-4•6(1+2k2)=16k2-24>0,即k2
3
2

因為左右對稱,可以研究單側(cè),
當k>0時,λ=
x1
x2
=
-b-
b2-4ac
-b+
b2-4ac
即λ=
8k-
16k2-24
8k+
16k2-24
=
2-
1-
3
2k2
2+
1-
3
2k2

由k2
3
2
,即0<
3
2k2
<1
,即0<
1-
3
2k2
?
<1
,
令t=
1-
3
2k2
?
∈(0,1),則λ=
2-t
2+t
,t∈(0,1),
由于λ=
2-t
2+t
=
4
2+t
-1
,故函數(shù)在t∈(0,1)上是減函數(shù),故
1
3
<λ<1

綜上,參數(shù)的取值范圍是
1
3
≤λ<1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線x-y+1=0經(jīng)過橢圓S:
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點和一個頂點.
(1)求橢圓S的方程;
(2)如圖,M,N分別是橢圓S的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC,并延長交橢圓于點B,設(shè)直線PA的斜率為k.
①若直線PA平分線段MN,求k的值;
②對任意k>0,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,點A,B關(guān)于y軸對稱.一曲線E過C點,動點P在曲線E上運動,且保持|PA|+|PB|的值不變.
(1)求曲線E的方程;
(2)已知點S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若點F(1,
3
2
)
是曲線E上的一點,設(shè)M,N是曲線E上不同的兩點,直線FM和FN的傾斜角互補,試判斷直線MN的斜率是否為定值,如果是,求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2為左、右焦點,離心率e=
1
2
,一個短軸的端點(0,
3
);拋物線C2:y2=4mx(m>0),焦點為F2,橢圓C1與拋物線C2的一個交點為P.
(1)求橢圓C1與拋物線C2的方程;
(2)直線l經(jīng)過橢圓C1的右焦點F2與拋物線C2交于A1,A2兩點,如果弦長|A1A2|等于△PF1F2的周長,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的兩條漸近線方程為直線l1:y=-
x
2
l2:y=
x
2
,焦點在y軸上,實軸長為2
3
,O為坐標原點.
(1)求雙曲線方程;
(2)設(shè)P1,P2分別是直線l1和l2上的點,點M在雙曲線上,且
P1M
=2
MP2
,求三角形P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[理]如圖,已知動點A,B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線上運動,若ABx軸,點N的坐標為(1,0),則△ABN的周長l的取值范圍是______.
[文]點P是曲線y=x2-lnx上任意一點,則P到直線y=x-2的距離的最小值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y=x-1被y2=x截得的弦長為( 。
A.3B.2
3
C.
10
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,左焦點為F,過原點的直線l交橢圓于M,N兩點,△FMN面積的最大值為1.
(1)求橢圓E的方程;
(2)設(shè)P,A,B是橢圓E上異于頂點的三點,Q(m,n)是單位圓x2+y2=1上任一點,使
OP
=m
OA
+n
OB

①求證:直線OA與OB的斜率之積為定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線y=kx與雙曲線
x2
a2
-
y2
b2
=1
的左右兩支都有交點的充要條件是k∈(-1,1),且該雙曲線與直線y=
1
2
x-
3
2
相交所得弦長為
4
15
3
,則該雙曲線方程為______.

查看答案和解析>>

同步練習冊答案