|
(1) |
證明:∵PA=AB=2a,PB=2a, ∴PA2+AB2=PB2,∴∠PAB=90°,即PA⊥AB. 同理PA⊥AE.------3分 ∵AB∩AE=A,∴PA⊥平面ABCDE.--------5分 |
(2) |
解:∵∠AED=90°, ∴AE⊥ED. ∵PA⊥平面ABCDE,∴PA⊥ED. ∴ED⊥平面PAE.過A作AG⊥PE于G, 過DE⊥AG,∴AG⊥平面PDE. 過G作GH⊥PD于H,連AH, 由三垂線定理得AH⊥PD.∴∠AHG為二面角A-PD-E的平面角.--------8分 在直角△PAE中,AG=a.在直角△PAD中,AH=a, ∴在直角△AHG中,sin∠AHG==.∴∠AHG=arcsin. ∴二面角A-PD-E的大小為arcsin.--------10分 |
(3) |
解:,, 取中點,連, 四邊形為平行四邊形. 而平面,平面 平面 點到平面的距離等于到平面的距離. 平面 又,平面PAE 平面.. 的長即為點到平面的距離.…………………………13分 在中,,為中點, 點到平面的距離為.……………………14分. |
科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;
(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經(jīng)過點D.
(1)建立適當坐標系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com