【題目】已知函數(shù)

(Ⅰ)求的極值;

(Ⅱ)當時,設,求證:曲線存在兩條斜率為且不重合的切線.

【答案】(Ⅰ)極小值;(Ⅱ)證明見解析.

【解析】分析:(Ⅰ)對a分類討論,利用導數(shù)求函數(shù)的極值. (Ⅱ)先把問題轉(zhuǎn)化為曲線在點,處的切線不重合,再利用反證法證明.

詳解:(Ⅰ)

,得

時,符號相同,

變化時,的變化情況如下表:

極小

時,符號相反,

變化時,,的變化情況如下表:

極小

綜上,處取得極小值.

(Ⅱ) ,

注意到,

所以,,,使得

因此,曲線在點,處的切線斜率均為.

下面,只需證明曲線在點,處的切線不重合.

曲線在點)處的切線方程為,假設曲線在點)處的切線重合,則

,則,且.

由(Ⅰ)知,當時,,

所以,在區(qū)間上單調(diào)遞減,于是有矛盾.

因此,曲線在點()處的切線不重合

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中美貿(mào)易爭端一直不斷,2003年至2005年末,由美國單方面挑起的一系列貿(mào)易摩擦給中美貿(mào)易關系蒙上了濃重的陰影,貿(mào)易大戰(zhàn)似乎一觸即發(fā),中美兩國進入了前所未有的貿(mào)易摩擦期.2018年,特朗普政府不顧中方勸阻,執(zhí)意發(fā)動貿(mào)易戰(zhàn),掀起了又一輪的中美貿(mào)易爭端.我國某種出口商品定價為每件60美元,美國不加收關稅時每年大約出口80萬件,中美經(jīng)貿(mào)摩擦后,美國政府執(zhí)意要加收進口關稅,每進口100美元商品要征稅P美元,因此每年出口量將減少萬件.

1)如果美國政府計劃每年對該商品加征的關稅金額不少于128萬美元,那么稅率應怎樣確定?

2)在美國政府計劃每年對該商品加征關稅金額不少于128萬美元的前提下,如何確定稅率,才會使得我國生產(chǎn)該商品的廠家稅后獲取最大的出口額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,a、b、c分別是角A、B、C的對邊,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.

(1)求角B的大;

(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD為菱形,,QAD的中點.

,求證:平面PQB平面PAD;

若平面APD平面ABCD,且M在線段PC上,試確定點M的位置,使二面角的大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四個命題:

①如果向量共線,則

的充分不必要條件;

③命題的否定是,;

④“指數(shù)函數(shù)是增函數(shù),而是指數(shù)函數(shù),所以是增函數(shù)”此三段論大前提錯誤,但推理形式是正確的.

以上命題正確的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的離心率為,過其右焦點作斜率為的直線,交雙曲線的兩條漸近線于兩點(點在軸上方),則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是正四面體的平面展開圖,分別是的中點,在這個正四面體中:①平行;②為異面直線;③成60°角;④垂直.以上四個命題中,正確命題的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向左平移1個單位,再將圖象上的所有點的縱坐標伸長到原來的2倍(橫坐標不變),得到函數(shù)的圖象.

1)求函數(shù)的解析式和定義域;

2)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設,農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設前后農(nóng)村的經(jīng)濟收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設后,種植收入減少

B. 新農(nóng)村建設后,其他收入增加了一倍以上

C. 新農(nóng)村建設后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

同步練習冊答案