對有關數(shù)據(jù)的分析可知,每一立方米混凝土的水泥用量x(單位:kg)與28天后混凝土的抗壓度y(單位:kg/cm2)之間具有線性相關關系,其線性回歸方程為=0.30x+9.99.根據(jù)建設項目的需要,28天后混凝土的抗壓度不得低于89.7 kg/cm2,每立方米混凝土的水泥用量最少應為________kg.(精確到0.1 kg)
265.7
由0.30x+9.99≥89.7,得x≥265.7.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

以下莖葉圖記錄了甲,乙兩組各三名同學在期末考試中的數(shù)學成績(十位數(shù)字為莖,個位數(shù)字為葉).乙組記錄中有一個數(shù)字模糊,無法確認,假設這個數(shù)字具有隨機性,并在圖中以表示.
(1)若甲,乙兩個小組的數(shù)學平均成績相同,求的值;
(2)當時,分別從甲,乙兩組同學中各隨機選取一名同學,求這兩名同學的數(shù)學成績之差的絕對值不超過2分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某電視臺為宣傳安徽,隨機對安徽15~65歲的人群抽取了人,回答問題“皖江城市帶有哪幾個城市?”統(tǒng)計結果如圖表所示:
組號
分組
回答正確的人數(shù)
回答正確的人數(shù)占本組的頻率
第1組
[15,25)

0.5
第2組
[25,35)
18

第3組
[35,45)

0.9[
第4組
[45,55)
9
0.36
第5組
[55,65)
3


(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)的散點圖,這些點將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析,下表是一位母親給兒子做的成長記錄:
年齡/周歲
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年齡/周歲
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年齡(解釋變量)和身高(預報變量)之間具有怎樣的相關關系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)計算殘差,說明該函數(shù)模型是否能夠較好地反映年齡與身高的關系,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某考察團對全國10大城市進行職工人均平均工資x與居民人均消費y進行統(tǒng)計調(diào)查,y與x具有相關關系,線性回歸方程=0.66x+1.562(單位:千元),若某城市居民消費水平為7.675,估計該城市消費額占人均工資收入的百分比約為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

從發(fā)生汽車碰撞事故的司機中抽取2 000名司機.根據(jù)他們的血液中是否含有酒精以及他們是否對事故負有責任.將數(shù)據(jù)整理如下:
 
有責任
無責任
合計
有酒精
650
150
800
無酒精
700
500
1 200
合計
1 350
650
2 000
那么,司機對事故負有責任與血液中含有酒精是否有關系?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標準》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別
PM2.5(微克/立方米)
頻數(shù)(天)
頻率
第一組
(0,15]
4
0.1
第二組
(15,30]
12
0.3
第三組
(30,45]
8
0.2
第四組
(45,60]
8
0.2
第五組
(60,75]
4
0.1
第六組
(75,90)
4
0.1
(1)寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計算過程);
(2)求該樣本的平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由;
(3)將頻率視為概率,對于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標準的天數(shù)為X,求X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將容量為50的樣本數(shù)據(jù),按從小到大的順序分成4組如右表,則第3組的頻率為____.(要求將結果化為最簡分數(shù))

查看答案和解析>>

同步練習冊答案