【題目】正三棱臺的上、下底面的邊長分別是3和6.
(1)若側(cè)面與底面所成的角為60°,求此三棱臺的體積;
(2)若側(cè)棱與底面所成的角為60°,求此三棱臺的側(cè)面積.

【答案】
(1)解:如圖,

作C1D1⊥A1B1,CD⊥AB,作C1E⊥CD=E,D1F⊥CD=F,

∵上底面邊長為3,∴上底面邊A1B1上的高 ,

∵下底面邊長為6,∴下底面邊AB上的高為CD= ,

,

, ,

上底面面積為 ,下底面面積為

若正三棱臺側(cè)面與底面成60°,即∠D1DF=60°,

∴三棱臺的高為 ,

則三棱臺體積V= =


(2)解:若正三棱臺側(cè)棱與底面成60°,即∠C1CE=60°,

∴三棱臺的高為 ,

則三棱臺的斜高為

∴此三棱臺的側(cè)面積為3×


【解析】由題意畫出圖形,由已知求出上下底面面積.(1)當(dāng)側(cè)面與底面所成的角為60°時(shí),解三角形求出棱臺的高,代入體積公式得答案;(2)當(dāng)側(cè)棱與底面所成的角為60°時(shí),解三角形求出棱臺的斜高,代入側(cè)面積公式得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高市場銷售業(yè)績,某公司設(shè)計(jì)兩套產(chǎn)品促銷方案(方案1運(yùn)作費(fèi)用為元/件;方案2的的運(yùn)作費(fèi)用為元/件),并在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷方案),運(yùn)作一年后,對比該地區(qū)上一年度的銷售情況,分別統(tǒng)計(jì)相應(yīng)營銷網(wǎng)點(diǎn)個(gè)數(shù),制作相應(yīng)的列聯(lián)表如下表所示.

無促銷活動(dòng)

采用促銷方案1

采用促銷方案2

本年度平均銷售額不高于上一年度平均銷售額

48

11

31

90

本年度平均銷售額高于上一年度平均銷售額

52

69

29

150

100

80

60

(Ⅰ)請根據(jù)列聯(lián)表提供的信息,為該公司今年選擇一套較為有利的促銷方案(不必說明理由);

(Ⅱ)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的組售價(jià)(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:

售價(jià)

銷量

(。┱埜鶕(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;

(ⅱ)根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤可以達(dá)到最大.

參考公式:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(1,2), =(﹣3,2),當(dāng)k為何值時(shí):
(1)k + ﹣3 垂直;
(2)k + ﹣3 平行,平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)(x,y)滿足 ,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的 ,令 ,下面說法錯(cuò)誤的是(
A.若 共線,則 =0
B. =
C.對任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,圓的直角坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),射線的極坐標(biāo)方程為

1)求圓和直線的極坐標(biāo)方程;

(2)已知射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +
(1)將函數(shù)f(x)化簡成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式;
(2)求f(x)的單調(diào)遞減區(qū)間,并指出函數(shù)|f(x)|的最小正周期;
(3)求函數(shù)f(x)在[ , ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市醫(yī)療保險(xiǎn)實(shí)行定點(diǎn)醫(yī)療制度,按照“就近就醫(yī)、方便管理”的原則,參加保險(xiǎn)人員可自主選擇四家醫(yī)療保險(xiǎn)定點(diǎn)醫(yī)院和一家社區(qū)醫(yī)院作為本人就診的醫(yī)療機(jī)構(gòu).若甲、乙、丙、丁4名參加保險(xiǎn)人員所在地區(qū)附近有A,B,C三家社區(qū)醫(yī)院,并且他們的選擇是相互獨(dú)立的.
(Ⅰ)求甲、乙兩人都選擇A社區(qū)醫(yī)院的概率;
(Ⅱ)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;
(Ⅲ)設(shè)4名參加保險(xiǎn)人員中選擇A社區(qū)醫(yī)院的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案