設(shè),,Q=;若將,lgQ,lgP適當(dāng)排序后可構(gòu)成公差為1的等差數(shù)列的前三項(xiàng).
(1)試比較M、P、Q的大小;
(2)求的值及的通項(xiàng);
(3)記函數(shù)的圖象在軸上截得的線段長(zhǎng)為,
設(shè),求,并證明.

(1)當(dāng)時(shí):;當(dāng)時(shí): ;當(dāng)時(shí):;
(2)當(dāng)時(shí):;當(dāng)時(shí):無(wú)解.

解析試題分析:(1)兩兩之間作差比較大小;(2)根據(jù)第(1)問(wèn)的結(jié)果結(jié)合等差數(shù)列項(xiàng)的關(guān)系求解;(3)先求出線段長(zhǎng),再表示出,通過(guò)裂項(xiàng)相消化簡(jiǎn)求值,再結(jié)合放縮法求范圍
試題解析:(1)由          2分
                      3分
                       4分
,
當(dāng)時(shí),,
當(dāng)時(shí),即,則                     5分
當(dāng)時(shí),,則
當(dāng)時(shí),,則
(2)當(dāng)時(shí),

解得,從而                7分
當(dāng)時(shí),
 , 無(wú)解.   8分
(3)設(shè)軸交點(diǎn)為 
當(dāng)=0時(shí)有
                          9分

,


     11分

         14分
考點(diǎn):1.作差比較大;2.分類討論思想;3.等差數(shù)列通項(xiàng);4.裂項(xiàng)相消求和;5.放縮法應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列且公比大于1,若,,且恰好是一各項(xiàng)均為正整數(shù)的等比數(shù)列的前三項(xiàng).
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列中,且滿足 (  )
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)公差為)的等差數(shù)列與公比為)的等比數(shù)列有如下關(guān)系:,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記,,求集合中的各元素之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,,點(diǎn)在直線上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是公比大于的等比數(shù)列,的前項(xiàng)和.若,且,,構(gòu)成等差數(shù)列.
(Ⅰ)求的通項(xiàng)公式.
(Ⅱ)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是一個(gè)等差 數(shù)列,且。
(1)求的通項(xiàng); (2)求的前項(xiàng)和的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

同步練習(xí)冊(cè)答案