【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線的方程為為參數(shù)),曲線的極坐標(biāo)方程為,若曲線相交于、兩點(diǎn).

(1)求的值;

(2)求點(diǎn)兩點(diǎn)的距離之積.

【答案】(1);(2).

【解析】

試題本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),利用將直線的極坐標(biāo)方程轉(zhuǎn)化為普通方程,再利用點(diǎn)到直線的距離公式計(jì)算,利用三角函數(shù)的有界性求最值;第二問(wèn),利用平方關(guān)系將曲線C的方程轉(zhuǎn)化為普通方程,將直線的參數(shù)方程與曲線C的方程聯(lián)立,消參,得到,即得到結(jié)論

試題解析:解析:(1) 曲線的普通方程為,,

的普通方程為,則的參數(shù)方程為:

代入,

2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)是否存在負(fù)實(shí)數(shù)a,使,函數(shù)有最小值-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著高考制度的改革,某省即將實(shí)施“語(yǔ)數(shù)外+3”新高考的方案,2019年秋季入學(xué)的高一新生將面臨從物理(物)、化學(xué)(化)、生物(生)、政治(政)、歷史(歷)、地理(地)六科中任選三科(共20種選法)作為自己將來(lái)高考“語(yǔ)數(shù)外+3”新高考方案中的“3”某市為了順利地迎接新高考改革,在某高中200名學(xué)生中進(jìn)行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個(gè)學(xué)生只能從表格中的20種課程組合中選擇一種學(xué)習(xí)模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表:

為了解學(xué)生成績(jī)與學(xué)生模擬選課情況之問(wèn)的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析

(1)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人要學(xué)習(xí)生物的概率:

(2)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機(jī)抽取3人,記這3人中要學(xué)習(xí)地理的人數(shù)為x,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)矩形所在平面與梯形所在平面相交于.,,.

1)求證:

2)若,求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;

2)求頻率分布直方圖中的a,b的值;

3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線,下面五個(gè)命題:

①對(duì)任意實(shí)數(shù),直線和圓有公共點(diǎn);

②存在實(shí)數(shù),直線和圓相切;

③存在實(shí)數(shù),直線和圓相離;

④對(duì)任意實(shí)數(shù),必存在實(shí)數(shù),使得直線與和圓相切;

⑤對(duì)任意實(shí)數(shù)必存在實(shí)數(shù),使得直線與和圓相切.

其中真命題的代號(hào)是______________________(寫(xiě)出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若不等式解集非空,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為2的正方體中,分別為的中點(diǎn),點(diǎn)在平面內(nèi),若直線與平面沒(méi)有公共點(diǎn),則線段長(zhǎng)的最小值是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長(zhǎng)都是4,EBC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.

1)當(dāng)CF=1時(shí),求證:EF⊥A1C;

2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案