【題目】設(shè)定義域?yàn)镽的奇函數(shù) (a為實(shí)數(shù)). (Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立,求實(shí)數(shù)k的取值范圍.

【答案】解:(Ⅰ)因?yàn)閒(x)是R上的奇函數(shù),所以f(0)=0,從而a=1,此時(shí) ,經(jīng)檢驗(yàn),f(x)為奇函數(shù),所以a=1滿足題意. (Ⅱ) 由(Ⅰ)知
所以f(x)在R上單調(diào)遞減,
由2x>0知2x+1>1,所以 ,
故得f(x)的值域?yàn)?
(Ⅲ)因?yàn)閒(x)為奇函數(shù),故由 ,
又由(Ⅱ)知f(x)為減函數(shù),故得 ,即
,則依題只需k<gmin(x).
由”對勾“函數(shù)的性質(zhì)可知g(x)在 上遞減,在 上遞增,所以
故k的取值范圍是
【解析】(Ⅰ)由f(0)=0,可求得a的值;(Ⅱ)可判斷f(x)在R上單調(diào)遞減,由 可求得 的值域;(Ⅲ)由任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立可得 ,構(gòu)造函數(shù)令 ,利用”對勾“函數(shù)的性質(zhì)可求得gmin(x),從而可求得實(shí)數(shù)k的取值范圍.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , 的夾角為60°, , ,當(dāng)實(shí)數(shù)k為何值時(shí),
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)已知x+x1=3,求下列各式 ,x2+x2的值;
(2)求值:(lg2)2+lg2lg50+lg25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為 ,且雙曲線C與斜率為2的直線l有一個(gè)公共點(diǎn)P(﹣2,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB在平面α內(nèi),線段BD⊥AB,線段AC⊥α,且AB= ,AC=BD=12,CD= ,求線段BD與平面α所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 + =1(a>b>0)的右焦點(diǎn)為F2(1,0),點(diǎn)H(2, )在橢圓上.
(1)求橢圓的方程;
(2)點(diǎn)M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點(diǎn),問:△PF2Q的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(文科做)已知函數(shù)f(x)=x﹣ ﹣(a+2)lnx,其中實(shí)數(shù)a≥0.
(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
(2)若a>0,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

)當(dāng),時(shí),證明:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,.

)證明:;

)若,求.

查看答案和解析>>

同步練習(xí)冊答案