【題目】 如果學(xué)生的成績(jī)大于或等于60分,則輸出及格,否則輸出不及格”.用程序框圖表示這一算法過(guò)程.

【答案】見(jiàn)解析

【解析】試題分析:本題要判斷學(xué)生的成績(jī)是否大于或等于60分,所以應(yīng)該選用條件結(jié)構(gòu),把X≥60是否成立作為判斷條件,若成立,輸出及格,若不成立,輸出不及格。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列表述正確的是( )

①歸納推理是由特殊到一般的推理;②演繹推理是由一般到特殊的推理;

③類比推理是由特殊到一般的推理;④分析法是一種間接證明法;

A. ②④ B. ①③ C. ①④ D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

1若函數(shù)存在極大值和極小值,求的取值范圍;

2設(shè),分別為的極大值和極小值,若存在實(shí)數(shù),使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,點(diǎn)是棱的中點(diǎn),

1求證:平面;

2求二面角的平面角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲、乙兩個(gè)投資項(xiàng)目,對(duì)甲項(xiàng)目投資十萬(wàn)元,據(jù)對(duì)市場(chǎng)份樣本數(shù)據(jù)統(tǒng)計(jì),年利潤(rùn)分布如下表:

年利潤(rùn)

萬(wàn)元

萬(wàn)元

萬(wàn)元

頻數(shù)

對(duì)乙項(xiàng)目投資十萬(wàn)元,年利潤(rùn)與產(chǎn)品質(zhì)量抽查的合格次數(shù)有關(guān),在每次抽查中,產(chǎn)品合格的概率均為,在一年之內(nèi)要進(jìn)行次獨(dú)立的抽查,在這次抽查中產(chǎn)品合格的次數(shù)與對(duì)應(yīng)的利潤(rùn)如下表:

合格次數(shù)

年利潤(rùn)

萬(wàn)元

萬(wàn)元

萬(wàn)元

記隨機(jī)變量分別表示對(duì)甲、乙兩個(gè)項(xiàng)目各投資十萬(wàn)元的年利潤(rùn)

1的概率;

2某商人打算對(duì)甲或乙項(xiàng)目投資十萬(wàn)元,判斷哪個(gè)項(xiàng)目更具有投資價(jià)值,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求函數(shù)上的最小值;

2,不等式恒成立,求的取值范圍;

3,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B,C表示不同的點(diǎn),L表示直線,α,β表示不同的平面,則下列推理錯(cuò)誤的是(  )

A. A∈L,A∈α,B∈L,B∈αLα

B. A∈α,A∈β,B∈α,B∈βα∩β=AB

C. Lα,A∈LAα

D. A∈α,A∈L,LαL∩α=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由直線與圓相切時(shí),圓心與切點(diǎn)連線與直線垂直,想到平面與球相切時(shí),球心與切點(diǎn)連線與平面垂直,用的是( )

A. 類比推理 B. 演繹推理 C. 歸納推理 D. 傳遞性推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】100件產(chǎn)品中有10件次品,從中任取7件,至少有5件次品的概率可以看成三個(gè)互斥事件的概率和,則這三個(gè)互斥事件分別是_____,__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案