【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩坐標(biāo)軸的距離之和等于它到定點(diǎn)的距離,記點(diǎn)的軌跡為.給出下面四個(gè)結(jié)論:①曲線關(guān)于原點(diǎn)對(duì)稱;②曲線關(guān)于直線對(duì)稱;③點(diǎn)在曲線上;④在第一象限內(nèi),曲線與軸的非負(fù)半軸、軸的非負(fù)半軸圍成的封閉圖形的面積小于.其中所有正確結(jié)論的序號(hào)是______.
【答案】②③④
【解析】
根據(jù)動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,可得曲線方程,作出曲線的圖象,即可得到結(jié)論.
動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,所以,
即.若,則,即,故,
以為中心的雙曲線的一支;若,則,即,故或,
所以函數(shù)的圖象如圖所示
所以曲線C關(guān)于直線對(duì)稱,②正確;又,所以點(diǎn)在曲線上,
③正確;在第一象限內(nèi),曲線與軸的非負(fù)半軸、軸的非負(fù)半軸圍成的封閉圖形的面積小于,故④正確.
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,和均為邊長(zhǎng)為的等邊三角形.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三(1)班在一次語(yǔ)文測(cè)試結(jié)束后,發(fā)現(xiàn)同學(xué)們?cè)诒痴b內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早、晚讀時(shí)間站起來(lái)大聲誦讀,為了解同學(xué)們對(duì)站起來(lái)大聲誦讀的態(tài)度,對(duì)全班50名同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后制成下表:
考試分?jǐn)?shù) | ||||||
頻數(shù) | 5 | 10 | 15 | 5 | 10 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使測(cè)試優(yōu)秀率為30%,則優(yōu)秀分?jǐn)?shù)線應(yīng)定為多少分?
(2)依據(jù)第1問(wèn)的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來(lái)大聲誦讀的態(tài)度與考試成績(jī)是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為贊成與否的態(tài)度與成績(jī)是否優(yōu)秀有關(guān)系.
參考公式及數(shù)據(jù):,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為為正三角形,平面平面,是線段的中點(diǎn),是線段上的動(dòng)點(diǎn).
(1)探究四點(diǎn)共面時(shí),點(diǎn)位置,并證明;
(2)當(dāng)四點(diǎn)共面時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽(yáng)馬中,側(cè)棱底面,且, 為中點(diǎn),點(diǎn)在上,且平面,連接, .
(Ⅰ)證明: 平面;
(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,說(shuō)明理由;
(Ⅲ)已知, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對(duì)應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說(shuō)法:
①可以估計(jì)使用主要聽音樂(lè)的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);
②可以估計(jì)不足的大學(xué)生使用主要玩游戲;
③可以估計(jì)使用主要找人聊天的大學(xué)生超過(guò)總數(shù)的.
其中正確的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}滿足a1=2,2a2=a4﹣a3,數(shù)列{bn}滿足bn=1+2log2an.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若λ>0,且對(duì)所有的正整數(shù)n都有2λ2﹣kλ+2成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ(a≠0).
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)直線l截圓C的弦長(zhǎng)是半徑長(zhǎng)的倍,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com