【題目】已知是定義域?yàn)?/span>的奇函數(shù),滿(mǎn)足,若,________

【答案】2

【解析】

根據(jù)函數(shù)奇偶性和對(duì)稱(chēng)性的關(guān)系求出函數(shù)的周期是4,結(jié)合函數(shù)的周期性和奇偶性進(jìn)行轉(zhuǎn)化求解即可.

∵f(x)是奇函數(shù),且f(1-x)=f(1+x),
∴f(1-x)=f(1+x)=-f(x-1),f(0)=0,
f(x+2)=-f(x),則f(x+4)=-f(x+2)=f(x),
即函數(shù)f(x)是周期為4的周期函數(shù),
∵f(1)=2,
∴f(2)=f(0)=0,f(3)=f(1-2)=f(-1)=-f(1)=-2,
f(4)=f(0)=0,
f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,
f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(45)+f(46)
=f(1)+f(2)=2+0=2,

即答案為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把兩個(gè)全等的正三棱錐的底面粘在一起,在所得的六面體中,所有二面角相等,而頂點(diǎn)可分成兩類(lèi):在第一類(lèi)中,每一個(gè)頂點(diǎn)發(fā)出三條棱;而在第二類(lèi)頂點(diǎn)中,每一個(gè)頂點(diǎn)發(fā)出四條棱。試求連結(jié)兩個(gè)第一類(lèi)頂點(diǎn)的線(xiàn)段長(zhǎng)與連結(jié)兩個(gè)第二類(lèi)頂點(diǎn)的線(xiàn)段長(zhǎng)之比。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求證:函數(shù)恰有一個(gè)負(fù)零點(diǎn);(用圖象法證明不給分)

2)若函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).其中表示的導(dǎo)函數(shù)的取值.

(1)的值及函數(shù)的單調(diào)區(qū)間;

(2)的定義域內(nèi)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.

(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);

(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求該函數(shù)的定義域;

(2)當(dāng)時(shí),如果對(duì)任何都成立,求實(shí)數(shù)的取值范圍;

(3)若,將函數(shù)的圖像沿軸方向平移,得到一個(gè)偶函數(shù)的圖像,設(shè)函數(shù)的最大值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬(wàn)元)對(duì)年銷(xiāo)售量(單位:千萬(wàn)件)的影響,統(tǒng)計(jì)了近年投入的年研發(fā)費(fèi)用與年銷(xiāo)售量的數(shù)據(jù),得到散點(diǎn)圖如圖所示.

(1)利用散點(diǎn)圖判斷(其中均為大于的常數(shù))哪一個(gè)更適合作為年銷(xiāo)售量和年研發(fā)費(fèi)用的回歸方程類(lèi)型(只要給出判斷即可,不必說(shuō)明理由)

(2)對(duì)數(shù)據(jù)作出如下處理,令,得到相關(guān)統(tǒng)計(jì)量的值如下表:根據(jù)第(1)問(wèn)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

15

15

28.25

56.5

(3)已知企業(yè)年利潤(rùn)(單位:千萬(wàn)元)與的關(guān)系為(其中),根據(jù)第(2)問(wèn)的結(jié)果判斷,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

(2)若存在實(shí)數(shù)使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年某地初中畢業(yè)升學(xué)體育考試規(guī)定:考生必須參加長(zhǎng)跑、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)測(cè)試各項(xiàng)20分,滿(mǎn)分60分.某學(xué)校在初三上學(xué)期開(kāi)始時(shí),為掌握全年級(jí)學(xué)生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學(xué)生進(jìn)行測(cè)試,其中女生54人,得到下面的頻率分布直方圖,計(jì)分規(guī)則如表1

1

每分鐘跳繩個(gè)數(shù)

得分

17

18

19

20

1)規(guī)定:學(xué)生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學(xué)生中,男生跳繩個(gè)數(shù)大于等于185個(gè)的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學(xué)生測(cè)試成績(jī),能否有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績(jī)優(yōu)秀與性別有關(guān)?

2

跳繩個(gè)數(shù)

合計(jì)

男生

28

女生

54

合計(jì)

100

附:參考公式:

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

2)根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步.假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),全年級(jí)恰有2000名學(xué)生,所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布(用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,各組數(shù)據(jù)用中點(diǎn)值代替).

①估計(jì)正式測(cè)試時(shí),1分鐘跳182個(gè)以上的人數(shù)(結(jié)果四舍五入到整數(shù));

②若在全年級(jí)所有學(xué)生中任意選取3人,正式測(cè)試時(shí)1分鐘跳195個(gè)以上的人數(shù)為,求的分布列及期望.

附:若隨機(jī)變量服從正態(tài)分布,則,

查看答案和解析>>

同步練習(xí)冊(cè)答案