已知直線(xiàn)l的參數(shù)方程為
x=4-tcosα
y=2+tsinα
(t為參數(shù)0<α<
π
2
).求直線(xiàn)l的傾斜角.(用α表示)
分析:由題意將直線(xiàn)l先化為一般方程坐標(biāo),然后再計(jì)算直線(xiàn)l的傾斜角.
解答:解:∵
4-x
cosα
=
y-2
sinα
(3分)
即ycosα-2cosα=4sinα-xsinαycosα=-xsinα+4sinα+2cosα(6分)
所以直線(xiàn)l的斜率為k=-tanα=tan(π-α),
0<α<
π
2

π
2
<π-α<π

故直線(xiàn)l的傾斜角為π-α,(10分)
點(diǎn)評(píng):此題考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,兩者要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

C選修4-4:坐標(biāo)系與參數(shù)方程已知直線(xiàn)l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),求直線(xiàn)l被曲線(xiàn)C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線(xiàn)l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線(xiàn)l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程是ρ=
sinθ
1-sin2θ
以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(0,2),直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).
(1)寫(xiě)出直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;
(2)線(xiàn)段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題) 已知直線(xiàn)l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線(xiàn)l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•香洲區(qū)模擬)已知直線(xiàn)L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線(xiàn)L與圓C有公共點(diǎn),則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案