【題目】已知兩定點(diǎn),點(diǎn)是平面內(nèi)的動點(diǎn),且,記的軌跡是
(1)求曲線的方程;
(2)過點(diǎn)引直線交曲線于兩點(diǎn),設(shè),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明直線過定點(diǎn).
【答案】(1);(2)見解析
【解析】
設(shè),根據(jù)條件列方程化簡即可;(2)先探究特殊性,當(dāng)點(diǎn)Q為橢圓的上頂
點(diǎn)(0,)時,直線RN過定點(diǎn)P(4,0).再討論一般情形,設(shè)直線l:點(diǎn)R,N,P三點(diǎn)共線,因此直線RN經(jīng)過定點(diǎn)P(4,0).
(1)設(shè),,,
則,,
由于,
即,設(shè),,
則,點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,
故,,,
所以,動點(diǎn)的軌跡的方程為:.
如圖所示,
先探究特殊性,當(dāng)點(diǎn)Q為橢圓的上頂點(diǎn)(0,)時,直線l:,
聯(lián)立直線和橢圓方程得,
直線RN:令y=0,得x=4,
所以直線RN過定點(diǎn)P(4,0).
下面證明一般情形:
設(shè)直線l:
聯(lián)立,
判別式
所以
即,
設(shè),于是,
,
又,
解得,
所以,
所以點(diǎn)R,N,P三點(diǎn)共線,因此直線RN經(jīng)過定點(diǎn)P(4,0).
綜上,直線RN經(jīng)過定點(diǎn)P(4,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于直線m、n及平面、,下列命題中正確的個數(shù)是( )
①若,則 ②若,則
③若,則 ④若,則
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,
(ⅰ)求的單調(diào)區(qū)間;
(ⅱ)若在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為降低空氣污染,提高環(huán)境質(zhì)量,政府決定對汽車尾氣進(jìn)行整治.某廠家生產(chǎn)甲、乙兩種不同型號的汽車尾氣凈化器,為保證凈化器的質(zhì)量,分別從甲、乙兩種型號的凈化器中隨機(jī)抽取100件作為樣本進(jìn)行產(chǎn)品性能質(zhì)量評估,評估綜合得分都在區(qū)間.已知評估綜合得分與產(chǎn)品等級如下表:
根據(jù)評估綜合得分,統(tǒng)計(jì)整理得到了甲型號的樣本頻數(shù)分布表和乙型號的樣本頻率分布直方圖(圖表如下).
甲型 乙型
(Ⅰ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取一件,估計(jì)這件產(chǎn)品為二級品的概率;
(Ⅱ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取3件,設(shè)隨機(jī)變量為其中二級品的個數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)圖表數(shù)據(jù),請自定標(biāo)準(zhǔn),對甲、乙兩種型號汽車尾氣凈化器的優(yōu)劣情況進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,,,D為線段AC的中點(diǎn).
(1)求證::
(2)求直線與平面所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論極值點(diǎn)的個數(shù);
(2)若a,b分別為的最大零點(diǎn)和最小零點(diǎn),當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,離心率為的橢圓過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線上存在點(diǎn),且過點(diǎn)的橢圓的兩條切線相互垂直,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com