【題目】已知四面體有五條棱長為3,且外接球半徑為2.動(dòng)點(diǎn)P在四面體的內(nèi)部或表面,P到四個(gè)面的距離之和記為s.已知?jiǎng)狱c(diǎn)P,兩處時(shí),s分別取得最小值和最大值,則線段長度的最小值為______.

【答案】

【解析】

設(shè)四面體為,其中,取的中點(diǎn)分別為,求出的長,將點(diǎn)到四個(gè)面的距離之和記為s,轉(zhuǎn)化為到其中兩個(gè)面的距離,利用等體積的方法分析出距離之和的最值,從而得到線段長度的最小值為,上兩點(diǎn)間的距離的最小值,得到答案.

四面體為,其中,設(shè).

的中點(diǎn)分別為,連接 ,如圖.

在等腰三角形中,有.

所以平面,又的中點(diǎn).

則四面體的外接球的球心一定在平面 .

同理可得四面體的外接球的球心一定在平面.

所以四面體的外接球的球心一定在.

連接,設(shè).

在直角三角形中,.

在三角形中,.

在直角三角形,.

所以長為定值,的長為定值.

根據(jù)條件有,設(shè)為, ,設(shè)為

設(shè)點(diǎn)到四個(gè)面,,,的距離分別為.

設(shè)四面體的體積為(為定值)

由等體積法有:

所以

所以

當(dāng)點(diǎn)上時(shí),最小.

當(dāng)點(diǎn)遠(yuǎn)離時(shí),的值增大,

由等體積法可得當(dāng)點(diǎn)上時(shí),的值相等,且此時(shí)的值最大.

所以當(dāng)點(diǎn)上時(shí),取得最值.

故線段長度的最小值為上兩點(diǎn)間的距離的最小值.

由上可知,.

所以上兩點(diǎn)間的距離的最小值為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則函數(shù)的零點(diǎn)個(gè)數(shù)為( )(是自然對數(shù)的底數(shù))

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地實(shí)行垃圾分類后,政府決定為三個(gè)小區(qū)建造一座垃圾處理站M,集中處理三個(gè)小區(qū)的濕垃圾.已知的正西方向,的北偏東方向,的北偏西方向,且在的北偏西方向,小區(qū)相距相距.

1)求垃圾處理站與小區(qū)之間的距離;

2)假設(shè)有大、小兩種運(yùn)輸車,車在往返各小區(qū)、處理站之間都是直線行駛,一輛大車的行車費(fèi)用為每公里元,一輛小車的行車費(fèi)用為每公里元(其中為滿足內(nèi)的正整數(shù)) .現(xiàn)有兩種運(yùn)輸濕垃圾的方案:

方案1:只用一輛大車運(yùn)輸,從出發(fā),依次經(jīng)再由返回到;

方案2:先用兩輛小車分別從運(yùn)送到,然后并各自返回到,一輛大車從直接到再返回到.試比較哪種方案更合算?請說明理由. 結(jié)果精確到小數(shù)點(diǎn)后兩位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將方格紙中每個(gè)小方格染三種顏色之一,使得每種顏色的小方格的個(gè)數(shù)相等.若相鄰兩個(gè)小方格的顏色不同,稱他們的公共邊為“分割邊”,則分割邊條數(shù)的最小值為( )

A.33B.56C.64D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何是美籍法國數(shù)學(xué)家芒德勃羅在20世紀(jì)70年代創(chuàng)立的一門數(shù)學(xué)新分支,其中的謝爾賓斯基圖形的作法是:先作一個(gè)正三角形,挖去一個(gè)中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的每個(gè)小正三角形中又挖去一個(gè)中心三角形”.按上述方法無限連續(xù)地作下去直到無窮,最終所得的極限圖形稱為謝爾賓斯基圖形(如圖所示),按上述操作7次后,謝爾賓斯基圖形中的小正三角形的個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面

(2)若平面平面,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個(gè)人的年收入,若這個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中,下列說法正確的是( )

A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極小值.

(1)求實(shí)數(shù)的值;

(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得關(guān)于的方程有三個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案