【題目】如圖,在直三棱柱側(cè)棱和底面垂直的棱柱中,平面側(cè)面,,線段AC、上分別有一點E、F且滿足,.
求證:;
求點E到直線的距離;
求二面角的平面角的余弦值.
【答案】(1)見解析
(2)
(3)﹣
【解析】
試題(1)過點A在平面A1ABB1內(nèi)作AD⊥A1B于D,由已知條件推導(dǎo)出AD⊥平面A1BC,由此能證明AB⊥BC.
(2)以點B為坐標(biāo)原點,以BC、BA、BB1所在的直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,利用向量法能求出點E到直線A1B的距離.
(3)分別求出平面BEF的法向量和平面BEC的法向量,利用向量法能求出二面角F﹣BE﹣C的平面角的余弦值.
(1)證明:如圖,過點A在平面A1ABB1內(nèi)作AD⊥A1B于D,
則由平面A1BC⊥側(cè)面A1ABB1,
且平面A1BC∩側(cè)面A1ABB1=A1B,
∴AD⊥平面A1BC,
又∵BC平面A1BC,∴AD⊥BC.
∵三棱柱ABC﹣A1B1C1是直三棱柱,∴AA1⊥底面ABC,∴AA1⊥BC.
又∵AA1∩AD=A,∴BC⊥側(cè)面A1ABB1,
又∵AB側(cè)面A1ABB1,∴AB⊥BC.(4分)
(2)解:由(1)知,以點B為坐標(biāo)原點,
以BC、BA、BB1所在的直線分別為x軸、y軸、z軸,
建立如圖所示的空間直角坐標(biāo)系,
B(0,0,0),A(0,3,0),C(3,0,0),A1(0,3,3)
∵線段AC、A1B上分別有一點E、F,滿足2AE=EC,2BF=FA1,
∴E(1,2,0),F(0,1,1),
∴,.
∵=0,∴EF⊥BA1,
∴點E到直線A1B的距離.(8分)
(3)解:,
設(shè)平面BEF的法向量,
則,取x=2,得=(2,﹣1,1),
由題意知平面BEC的法向量,
設(shè)二面角F﹣BE﹣C的平面角為θ,
∵θ是鈍角,∴cosθ=﹣|cos<>|=﹣=﹣,
∴二面角F﹣BE﹣C的平面角的余弦值為﹣.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為元.旅行團中的每個人的飛機票按以下方式與旅行社結(jié)算:若旅行團的人數(shù)不超過人時,飛機票每張元;若旅行團的人數(shù)多于人時,則予以優(yōu)惠,每多人,每個人的機票費減少元,但旅行團的人數(shù)最多不超過人.設(shè)旅行團的人數(shù)為人,飛機票價格元,旅行社的利潤為元.
(1)寫出每張飛機票價格元與旅行團人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅行團人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)判斷該高三學(xué)生的記憶力x和判斷力是正相關(guān)還是負(fù)相關(guān);并預(yù)測判斷力為4的同學(xué)的記憶力.
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)如果、、滿足,那么稱比更靠近.當(dāng)且時,試比較和哪個更靠近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,試判斷函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com