【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)(2)(3)(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.

(1) 求出,,并猜測的表達式;

(2) 求證:+…+.

【答案】(1) f(2)5,f(3)13,f(4)25,f(5)254×441.f(n)2n22n1.

(2)

【解析】

本試題主要是考查了數(shù)列的歸納猜想思想的運用,根據(jù)前幾項。來猜想并運用數(shù)學歸納法加以證明。

1)結(jié)合題目中的 遞推關(guān)系式可知前幾項的值,并猜想結(jié)論。

2)分為兩步驟進行,先證明n取第一個值時成立,再假設(shè)n=k時成立,證明n=k+1時也成立即可。

解: (1)∵f(1)1,f(2)5,f(3)13f(4)25,f(5)254×441.

f(2)f(1)44×1,f(3)f(2)84×2,f(4)f(3)124×3f(5)f(4)164×4,

由上式規(guī)律得出f(n1)f(n)4n. ∴f(n)f(n1)4(n1)f(n1)f(n2)4·(n2),

f(n2)f(n3)4·(n3)

f(2)f(1)4×1,

f(n)f(1)4[(n1)(n2)21]2(n1)·nf(n)2n22n1(n≥2),

n1時,f(1)也適合f(n)

f(n)2n22n1. --------6

---------------12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合ABR中兩個子集,對于,定義: .①若;則對任意;②若對任意,則;③若對任意,則A,B的關(guān)系為.上述命題正確的序號是______. (請?zhí)顚懰姓_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓,把圓上每一點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,且傾斜角為,經(jīng)過點的直線與曲線交于兩點.

(1)當時,求曲線的普通方程與直線的參數(shù)方程;

(2)求點兩點的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對于函數(shù)的圖象上兩點, ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“水是生命之源”,但是據(jù)科學界統(tǒng)計可用淡水資源僅占地球儲水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸):一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;

(3)若該市政府希望使的居民每月的用水不按議價收費,估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外,每年都要花費一定的維護費,第一年的維護費為2萬元,由于設(shè)備老化,以后每年的維護費都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費用為(單位:萬元)

(1)用表示

(2)當該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面向量=(1,x),=(2x+3,-x),xR.

1)若,求x的值;

2)若,求|-|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若a=0時,求函數(shù)的零點;

(2)若a=4時,求函數(shù)在區(qū)間[2,5]上的最大值和最小值;

(3)當時,不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

①函數(shù)y=2sin的圖象的一條對稱軸是x=;

②函數(shù)y=tanx的圖象關(guān)于點對稱;

③若sin=sin,則x1-x2=,其中kZ;

④函數(shù)x[0,2π]的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍為(1,3).

其中正確的有____(填寫所有正確命題的序號).

查看答案和解析>>

同步練習冊答案