【題目】在平面直角坐標系中,,分別是橢圓的左、右焦點,直線與橢圓交于不同的兩點、,且.
(1)求橢圓的方程;
(2)已知直線經(jīng)過橢圓的右焦點,是橢圓上兩點,四邊形是菱形,求直線的方程;
(3)已知直線不經(jīng)過橢圓的右焦點,直線,,的斜率依次成等差數(shù)列,求直線在軸上截距的取值范圍.
【答案】(1)(2)(3)
【解析】
(1)由已知得:,問題得解;
(2)由已知可得:,設直線l方程為:,,,與橢圓方程聯(lián)立可得:,由韋達定理,得:,,最后由,可得:,代入解方程即可;
(3)設直線l方程為:,由已知可得:,即,化簡得:,有已知可得:,聯(lián)立直線與橢圓方程得:,由,
和可求b的取值范圍.
(1)由可得:,
從而,所以橢圓方程為.
(2)由于四邊形是菱形,因此且.
由對稱性,在線段上. 因此,分別關于原點對稱;
并且由于菱形的對角線相互垂直,可得,即.
設直線l方程為:,且,
與橢圓方程聯(lián)立可得:,
,,
由,可得:
解得,即直線方程為.
(3)設直線l方程為:,
,由已知可得:
,即.
,
化簡得:.
若,則經(jīng)過,不符合條件,
因此.
聯(lián)立直線與橢圓方程得:.
因為,即
由得:
將代入得:,
解得:
令,則
當時,,
在或上單調(diào)遞減,
或
所以b的取值范圍為:.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足.
(1)求證:數(shù)列等差數(shù)列;
(2)當時,記,是否存在正整數(shù)、,使得、、成等比數(shù)列?若存在,求出所有滿足條件的數(shù)對;若不存在,請說明理由;
(3)若數(shù)列、、、、、是公比為的等比數(shù)列,求最小正整數(shù),使得當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當悠久,日前我國南方農(nóng)戶在播種水稻時一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進行試驗.其中第一組采用直播的方式進行播種,第二組采用撒播的方式進行播種.得到數(shù)據(jù)如下表:
產(chǎn)量(單位:斤) 播種方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
約定畝產(chǎn)超過900斤(含900斤)為“產(chǎn)量高”,否則為“產(chǎn)量低”
(1)請根據(jù)以上統(tǒng)計數(shù)據(jù)估計100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)
(2)請根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認為“產(chǎn)量高”與“播種方式”有關?
產(chǎn)量高 | 產(chǎn)量低 | 合計 | |
直播 | |||
散播 | |||
合計 |
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)函數(shù)在區(qū)間()上有零點,求k的值;
(2)若不等式對任意正實數(shù)x恒成立,求正整數(shù)m的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國有十二生肖,又叫十二屬相,是以十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)形象化代表人的出生年份,現(xiàn)有十二生肖的吉祥物各一個,三位屬相不同的小朋友依次每人選一個,則三位小朋友都不選和自己屬相相同的吉祥物的選法有________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的焦點為,點是拋物線上一點,且.
(1)求的值;
(2)若為拋物線上異于的兩點,且.記點到直線的距離分別為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com