精英家教網 > 高中數學 > 題目詳情
形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(Ⅱ)用隨機變量ζ表示一局游戲后,小球停在陰影部分的事件數與小球沒有停在陰影部分的事件數之差的絕對值,求隨機變量ζ的分布列及數學期望.
分析:(I)先根據幾何概型的概率公式得到在三個圖形中,小球停在陰影部分的概率,因為三個小球是否停在陰影部分相互之間沒有關系,根據相互獨立事件同時發(fā)生的概率得到結果.
(II)根據一次游戲結束小球停在陰影部分的事件數可能是0,1,2,3,得到ξ的可能取值是1,3,當變量等于3時,表示三個小球都在陰影部分或三個小球都不在陰影部分,這兩種情況是互斥的,得到概率,分布列和期望.
解答:解:(I)“一局游戲后,這三個盤中的小球都停在陰影部分”分別記為事件A1、A2、A3
由題意知,A1、A2、A3互相獨立,
且P(A1)=
1
2
,P(A2)=
1
4
,P(A3)=
1
3
,…(3分)
∴P(A1 A2 A3)=P(A1) P(A2) P(A3)=
1
2
×
1
4
×
1
3
=
1
24
…(6分)
(II)一局游戲后,這三個盤中的小球都停在陰影部分的事件數可能是0,1,2,3,相應的小球沒有停在陰影部分的事件數可能取值為3,2,1,0,所以ξ可能的取值為1,3,則
P(ξ=3)=P(A1 A2 A3)+P(
.
A1
.
A2
.
A3
)=P(A1) P(A2) P(A3)+P(
.
A1
)P(
.
A2
)P(
.
A3

=
1
2
×
1
4
×
1
3
+
1
2
×
3
4
×
2
3
=
7
24
,
P(ξ=1)=1-
7
24
=
17
24
. …(8分)
所以分布列為
ξ 1 3
P
17
24
7
24
…(10分)
數學期望Eξ=1×
17
24
+3×
7
24
=
19
12
. …(12分)
點評:本題考查幾何概型的概率公式,考查相互獨立事件同時發(fā)生的概率,考查離散型隨機變量的分布列和期望,本題是一個典型的綜合題目,可以作為高考卷中的題目出現.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

形狀如圖所示的三個游戲盤中(圖1是正方形,M、N分別是所在邊中點,圖2是半徑分別為2和4的兩個同心圓,O為圓心,圖3是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(II)用隨機變量ξ表示一局游戲后,小球停在陰影部分的事件數與小球沒有停在陰影部分的事件數之差的絕對值,求隨機變量ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•泰安二模)形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次水平搖動三個游戲盤,當小球靜止后,就完成了一局游戲.

(1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(II)用隨機變量ξ表示一局游戲后,小球停在陰影部分的事件個數與小球沒有停在陰影部分的事件個數之差的絕對值,求隨機變量ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖北省八市高三三月聯(lián)考理科數學 題型:解答題

(本題滿分12分)

形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.

(I)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?

(II)用隨機變量表示一局游戲后,小球停在陰影部分的事件數與小球沒有停在陰影部分的事件數之差的絕對值,求隨機變量的分布列及數學期望.

 

查看答案和解析>>

科目:高中數學 來源:2012年遼寧省大連市高考數學壓軸卷 (理科)(解析版) 題型:解答題

形狀如圖所示的三個游戲盤中(圖1是正方形,M、N分別是所在邊中點,圖2是半徑分別為2和4的兩個同心圓,O為圓心,圖3是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(II)用隨機變量ξ表示一局游戲后,小球停在陰影部分的事件數與小球沒有停在陰影部分的事件數之差的絕對值,求隨機變量ξ的分布列及數學期望.

查看答案和解析>>

同步練習冊答案