若a>b,M=a2-ab,N=ab-b2,則( 。
A、M>NB、M≥N
C、M<ND、M≤N
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:利用作差法、完全平方公式、實(shí)數(shù)的性質(zhì)即可得出.
解答: 解:∵a>b,
∴M-N=(a2-ab)-(ab-b2)=(a-b)2>0.
∴M>N.
故選:A.
點(diǎn)評(píng):本題考查了作差法、完全平方公式、實(shí)數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

斜率為2的直線過中心在原點(diǎn)、焦點(diǎn)在x軸的雙曲線的右焦點(diǎn).它與雙曲線的兩個(gè)交點(diǎn)分別在雙曲線的左、右兩支上,則雙曲線的e的范圍是( 。
A、e>
2
B、1<e<
3
C、1<e<
5
D、e>
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,則sin2θ+2cos2θ=( 。
A、
4
3
B、-
4
3
C、-
6
25
D、
6
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-2x+1,x≥0
4-x2,x<0
,則f(f(2))=( 。
A、4B、-5C、5D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
、
e2
是夾角為60°的兩個(gè)單位向量,則向量
a
=2
e1
+
e2
與向量
b
=-3
e1
+2
e2
的夾角為( 。
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c,d∈R,則下列命題中一定成立的是( 。
A、若a>b,c>d則a>c
B、若a>b,則ac>bc
C、若a>-b,則c-a<c+b
D、若a2>b2,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AC⊥BC,AC=b,BC=a,則△ABC的外接圓半徑r=
a2+b2
2
,將此結(jié)論拓展到空間,可得出的正確結(jié)論是:在四面體S-ABC中,若SA、SB、SC兩兩互相垂直,SA=a,SB=b,SC=c,則四面體S-ABC的外接球半徑R=( 。
A、
a2+b2+c2
2
B、
a2+b2+c2
3
C、
3a3+b3+c3
3
D、
3abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)1≤x≤3時(shí),函數(shù)f(x)=2x2-6x+c的值域?yàn)椋ā 。?/div>
A、[f(1),f(3)]
B、[f(1),f(
3
2
)]
C、[f(
3
2
),f(3)]
D、[c,f(3)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)為R上的減函數(shù),且f(xy)=f(x)+f(y).
(1)求f(1).
(2)解不等式f(2x-3)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案