【題目】圖,在空間多面體中,四邊形為直角梯形,, ,是正三角形,。

)求證:平面平面

)求二面角的余弦值。

【答案】證明見(jiàn)解析;。

【解析】

試題分析:借助題設(shè)條件運(yùn)用面面垂直的判定定理推證;借助題設(shè)條件運(yùn)用二面角的定義進(jìn)行轉(zhuǎn)化為平面角或運(yùn)用空間向量的數(shù)量積公式求解。

試題解析:

證明:()因?yàn)?/span>,

所以,

所以,

因?yàn)?/span>,

所以平面,

因?yàn)?/span>平面,

所以平面平面,

法一:()取中點(diǎn),連接,過(guò),過(guò),連接,所以是二面角的平面角,

設(shè),

中,,所以

中,,所以,,

因?yàn)?/span>,所以,

中,所以,

因?yàn)?/span>,所以,

所以,

過(guò),則中點(diǎn),

所以,

中,,

所以,即二面角的余弦值為。

法二:()過(guò),過(guò),,

連接,則是正方形,

因?yàn)?/span>,所以,

所以是梯形,

過(guò),連接,

因?yàn)?/span>,平面,

所以,即

是二面角的平面角,

設(shè),則,

,,

所以,,

所以,

所以二面角的余弦值為

法三:()過(guò)點(diǎn)平面,由()知:平面平面,所以平面,

為原點(diǎn),分別以軸、軸、軸建立空間直角坐標(biāo)系,則,,因?yàn)?/span>,且,所以

,,

設(shè)平面的法向量為,則,

,取,

同理可得平面的法向量

所以,

因?yàn)槎娼?/span>是鈍角,所以其余弦值是。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有10個(gè)紅球和10個(gè)綠球,它們除顏色不同外,其它都相同.從袋中隨機(jī)取2個(gè)球,互斥而不對(duì)立的事件是(

A.至少有一個(gè)紅球;至少有一個(gè)綠球B.至少有一個(gè)紅球;都是紅球

C.恰有一個(gè)紅球;恰有兩個(gè)綠球D.至少有一個(gè)紅球;都是綠球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)棱底面,,,。

)若為線段上一點(diǎn),且,求證:平面;

)若分別是線段的中點(diǎn),設(shè)平面將三棱柱分割成左、右兩部分,記它們的體積分別為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)定義在區(qū)間上的函數(shù),如果對(duì)任意,都有成立,那么稱函數(shù)在區(qū)間D上可被替代,D稱為替代區(qū)間.給出以下命題:

在區(qū)間上可被替代;

可被替代的一個(gè)替代區(qū)間

在區(qū)間可被替代,則

,則存在實(shí)數(shù),使得在區(qū)間上被替代;

其中真命題的有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中是自然對(duì)數(shù)的底數(shù))。

)若關(guān)于的方程有唯一實(shí)根,求的值;

)若過(guò)原點(diǎn)作曲線的切線與直線垂直,證明:

)設(shè),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某技術(shù)公司新開(kāi)發(fā)了兩種新產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

產(chǎn)品

8

12

40

32

8

產(chǎn)品

7

18

40

29

6

(1)試分別估計(jì)產(chǎn)品,產(chǎn)品為正品的概率;

(2)生產(chǎn)一件產(chǎn)品,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品,若是正品可盈利100元,次品則虧損20元,在(1)的前提下,記為生產(chǎn)1件產(chǎn)品和1件產(chǎn)品所得的總利潤(rùn),求隨機(jī)變量的分列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶某重點(diǎn)中學(xué)高一新生小王家在縣城A地,現(xiàn)在主城B地上學(xué)。周六小王的父母從早上8點(diǎn)從家出發(fā),駕車3小時(shí)到達(dá)主城B地,期間由于交通等原因,小王父母的車所走的路程單位:km與離家的時(shí)間單位:h的函數(shù)關(guān)系為。達(dá)到主城B地后,小王父母把車停在B地,在學(xué)校陪小王玩到16點(diǎn),然后開(kāi)車從B地以的速度沿原路返回。

1求這天小王父母的車所走路程單位:km與離家時(shí)間單位:h的函數(shù)解析式;

2在距離小王家60處有一加油站,求這天小王父母的車途經(jīng)加油站的時(shí)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)上是奇函數(shù),且對(duì)任意都有,當(dāng)時(shí),,

1的值;

2判斷的單調(diào)性,并證明你的結(jié)論;

3求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)有兩個(gè)分類變量X和Y的2×2列聯(lián)表:

X\Y

y1

y2

總計(jì)

x1

a

40

a+40

x2

30﹣a

30

60﹣a

總計(jì)

30

70

100

在犯錯(cuò)誤的概率不超過(guò)百分之5的前提下,下面哪個(gè)選項(xiàng)無(wú)法認(rèn)為變量X,Y有關(guān)聯(lián)(
A.a=10
B.a=12
C.a=8
D.a=9

查看答案和解析>>

同步練習(xí)冊(cè)答案