設函數(shù)f(x)=2x+2,觀察:f1(x)=2x+2,f2(x)=f(f1(x))=4x+6,f3(x)=f(f2(x))=8x+14,f4(x)=f(f3(x))=16x+30,…,根據(jù)以上事實,由歸納推理可得:當n∈N*且n≥2時,fn(x)=f(fn-1(x))=
 
考點:歸納推理
專題:推理和證明
分析:觀察所給的前四項的結構特點,函數(shù)的解析式是一個一次函數(shù),根據(jù)一次函數(shù)的一次項系數(shù)與常數(shù)項的變化特點,得到結果.
解答: 解:由已知中:
f1(x)=2x+2,
f2(x)=f(f1(x))=4x+6,
f3(x)=f(f2(x))=8x+14,
f4(x)=f(f3(x))=16x+30,

歸納可得:fn(x)=f(fn-1(x))解析式的中,
一次項系數(shù)構造以2為首項,以2為公比的等比數(shù)列,常數(shù)項是一次項系數(shù)減1與2的積,
故fn(x)=f(fn-1(x))=2nx+2(2n-1),
故答案為:2nx+2(2n-1)
點評:本題考查歸納推理,實際上本題考查的重點是給出一個數(shù)列的前幾項寫出數(shù)列的通項公式,本題是一個綜合題目,知識點結合的比較巧妙.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在極坐標系下,設圓C:ρ=2cosθ-4sinθ,試求:
(1)圓心的直角坐標表示;
(2)在直角坐標系中,設曲線C經(jīng)過變換μ:
x′=2x-2
y′=3y+6
得到曲線C′,則曲線C′的軌跡是什么圖形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},a1=2,an=2an-1+2n(n≥2)
(1)求證:{
an
2n
}為等差數(shù)列;
(2)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,那么a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式ax2+bx+1>0的解集為{x|-3<x<2},則a+b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,an≠0,且a1,a3,a4成等比數(shù)列,公比為q,則q=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用數(shù)學歸納法證明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N*”時,從假設n=k推證n=k+1成立時,可以在n=k時左邊的表達式上再乘一個因式,多乘的這個因式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列1,1,2,3,5,8,13,x,34,55…中的x的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式mx2+mx-4<2x2+2x-1對任意實數(shù)x均成立,則實數(shù)m的取值范圍是( 。
A、(-2,2)
B、(-10,2]
C、(-∞,-2)∪[2,+∞)
D、(-∞,-2)

查看答案和解析>>

同步練習冊答案