2.對于函數(shù)y=f(x),部分x與y的對應(yīng)關(guān)系如表:
x123456789
y745813526
數(shù)列{xn}滿足x1=2,且對任意n?N,點(xn,xn+1)都在函數(shù)y=f(x)的圖象上,則x1+x2+x3+…+x2017的值為( 。
A.9400B.9408C.9410D.9414

分析 利用已知函數(shù)的關(guān)系求出數(shù)列的前幾項,得到數(shù)列是周期數(shù)列,然后求出通過周期數(shù)列的和,即可求解本題.

解答 解:因為數(shù)列{xn}滿足x1=2,且對任意n∈N*,點(xn,xn+1)都在函數(shù)y=f(x)的圖象上,xn+1=f(xn
所以x1=2,x2=4,x3=8,x4=2,x5=4,x6=8,x7=2,x8=4…
所以數(shù)列是周期數(shù)列,周期為3,一個周期內(nèi)的和為14,
所以x1+x2+x3+x4+…+x2016+x2017=672×(x1+x2+x3)+2=9410.
故選:C.

點評 本題考查函數(shù)與數(shù)列的關(guān)系,周期數(shù)列求和問題,判斷數(shù)列是周期數(shù)列是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋擲一枚質(zhì)地均勻的骰子兩次,記事件A={兩次的點數(shù)均為奇數(shù)},B={兩次的點數(shù)之和小于7},則P(B|A)=( 。
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知圓C的半徑為2,圓心在x軸的正半軸上,直線3x+4y+4=0與圓C相切,則圓C的一般方程是x2+y2-4x=0;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=x2-3x-10,則函數(shù)f(1-x)的單調(diào)遞增區(qū)間是( 。
A.($\frac{3}{2}$,+∞)B.(-$\frac{1}{2}$,+∞)C.(-4,3)D.(-∞,-4)和(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax2lnx-(x-1)(x>0),曲線y=f(x)在點(1,0)處的切線方程為y=0.
(1)求證:當(dāng)x≥1時,f(x)≥(x-1)2; 
(2)若當(dāng)x≥1時,f(x)≥m(x-1)2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,則$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=( 。
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(2sinθ,sinθ-cosθ),$\overrightarrow n=(cosθ,-2-m)$,函數(shù)$f(θ)=\overrightarrow m•\overrightarrow n$的最小值為g(m).
(1)當(dāng)m=2時,求g(m)的值;
(2)求g(m);
(3)已知函數(shù)h(x)為定義在R上的增函數(shù),且對任意的x1,x2都滿足h(x1+x2)=h(x1)+h(x2),問:是否存在這樣的實數(shù)m,使不等式$h(\frac{4}{sinθ-cosθ})+h(2m+3)>h(f(θ))$對所有$θ∈(\frac{π}{4},π)$恒成立.若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)討論f(x)的單調(diào)區(qū)間;
(2)若f(x)在[1,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(3)當(dāng)0<a<2時,f(x)在[1,4]上的最小值為-$\frac{16}{3}$,求f(x)在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(-2,2-x),若$\overrightarrow{a}$=λ$\overrightarrow$,則λ=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案