已知α是銳角,且
(sin2α+cos2α-1)(sin2α-cos2α+1)
sin4α
=
3
,求∠α.
考點:三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值
分析:先化簡,利用平方差公式把分子展開,利用二倍角公式把分母展開,化簡整理后,繼續(xù)用二倍角公式化簡約分即可.
解答: 解:原式=
sin22α-(cos2α-1)2
sin4α
=
1-2cos22α+2cos2α-1
2sin2αcos2α
=
cos2α(1-cos2α)
sin2αcos2α
=
1-cos2α
sin2α
=
2sin2α
2sinαcosα
=tanα=
3

已知α是銳角,故∠α的值為
π
3
點評:本題主要考查了三角函數(shù)恒等變換的應(yīng)用.解題過程中靈活運用二倍角公式,化簡的關(guān)鍵是消掉常數(shù)項,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P1,P2,…,P8拋物線y2=4x上的一點,它們的橫坐標依次為x1,x2,…x8,F(xiàn)是拋物線的焦點,若x1+x2+…+x8=10,則絕對值|P1F|+|P2F|+…+|P8F|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=
2
,BC=2,點E為BC為中點,點F在邊CD上.
(1)若點F是CD的中點,則
AE
AF
=
 

(2)若
AB
AF
=
2
,則
AE
BF
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1,3,6,10,x,21,28,…中,由給出的數(shù)之間的關(guān)系可知x的值是( 。
A、12B、15C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在曲線y=cosx(
2
π
<x<
2
)上有橫坐標是x,x+
1
2
的A,B兩點,它們在x軸上的射影是A′B′,則梯形A′ABB′的面積達到最大時,x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2x-8
的定義域為集合A,函數(shù)g(x)=x2-2x+a,x∈[0,4]的值域為集合B,若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+β)=
2
3
,tan(β-
π
4
)=
1
7
,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
1
4
,b=log9
8
5
,c=log8
3
,則a,b,c之間的大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,角A、B、C的對邊分別為a、b、c,且三角形的面積為S=
3
2
accosB.
(1)求角B的大小
(2)已知
c
a
+
a
c
=4,求sinAsinC的值.

查看答案和解析>>

同步練習(xí)冊答案