【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數(shù)API的監(jiān)測數(shù)據,結果統(tǒng)計如下:

API

[0,100]

(100,200]

(200,300]

>300

空氣質量

優(yōu)良

輕污染

中度污染

重度污染

天數(shù)

17

45

18

20

記某企業(yè)每天由空氣污染造成的經濟損失S(單位:元),空氣質量指數(shù)API.當時,企業(yè)沒有造成經濟損失;當對企業(yè)造成經濟損失成直線模型(當時造成的經濟損失為,當時,造成的經濟損失;當時造成的經濟損失為2000元;

(1)試寫出的表達式;

(2)若本次抽取的樣本數(shù)據有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有99%的把握認為該市本年空氣重度污染與供暖有關?

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

P(k2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1);(2)見解析

【解析】

(1)根據已知,時對企業(yè)沒有造成經濟損失;當時經濟損失成直線模型,斜率為,則;當時造成的經濟損失為2000元;可得函數(shù)關系式;

(2)根據題意填寫列聯(lián)表,計算觀測值,對照臨界值得出結論.

解:(1)

(2)根據以上數(shù)據得到如下列聯(lián)表:

則計算可得

所以有的把握認為該市本年空氣重度污染與供暖有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x,x∈R.

(1)當m取何值時,方程|f(x)-2|=m有一個解?兩個解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD外接于圓,AC是圓周角∠BAD的角平分線,過點C的切線與AD延長線交于點E,AC交BD于點F.

(1)求證:BD∥CE;
(2)若AB是圓的直徑,AB=4,DE=1,求AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系內,點實施變換后,對應點為,給出以下命題:

①圓上任意一點實施變換后,對應點的軌跡仍是圓

②若直線上每一點實施變換后,對應點的軌跡方程仍是

③橢圓上每一點實施變換后,對應點的軌跡仍是離心率不變的橢圓;

④曲線上每一點實施變換后,對應點的軌跡是曲線,是曲線上的任意一點,是曲線上的任意一點,則的最小值為.

以上正確命題的序號是___________________(寫出全部正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為是橢圓上一點.

(1)求橢圓的標準方程;

(2)過橢圓右焦點的直線與橢圓交于兩點,是直線上任意一點.

證明:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點”,若,則稱的“穩(wěn)定點”,函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,那么,

(1)求函數(shù)的“穩(wěn)定點”;

(2)求證:;

(3)若,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

同步練習冊答案